AD-A147 289 SOFTHARE TEST HANDBOOK: SOFTWARE TEST GUIDEBOOK YOLUME 4/3 .
2(U> BOEING AEROSPACE CO SEATTLE WA ENGINEERING
) TECKNOLOGY DIV E PRESSON WAR 84 RADC-TR-84-33- VOL 2
UNCLASSIFIED F30602-82-C-8859

G 9/2

.

Ad -
e vk

e e, w e W
-

AR

AT i -
P, SRV, Ry Iy RN SR

At

——

RNSCRACRMD A T

w
— e ™

\
Lo

-
.

[l
S
fr
g |
i

i
3!
[
o
..“
B 1
4 7l
U X
-.
'

s

SR W SNSRI W WS ST

ol il ©
~ S Nl
. = =

-~ -

s EEE
AdAa m_umu._.m
20 =l

| |||||

1.8

16

2]
o)
N

. TN
~
~h

"

o®
N
P]

o -
NI
A

.-

S DA
T B T S R G P

Py

. g

TR
el T)

ol

TN« o~ gy -
B)
. N

AD-A147 289

RADC-TR-84.53, Vol Il (of two)
Final Technical Report
March 1984

SOFTWARE TEST HANDBOOK Software
Test Guidebook

Boeing Aerospace Company

Edward Presson

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441

OTIC FILE Copy

84 10 23 016

A ST S G o b et e e T S . S R S UG ‘m s a'm - a
— S

DTIC

QELECTE N
b NOVE 1984 *

WMB

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-84~53, Vol II (of two) has been reviewed and is approved for
publication,

APPROVED: /d ;‘ m omta,

FRANK S. LaMONICA
Project Engineer

APPROVED: ﬁa,,.,(/ Z@}V

RAYMOND P. URTZ, JR.
Acting Technical Director
Command & Control Division

FOR THE COMMANDER: :; . a‘

JOHN A. RITZ
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organizatiom,
please notify RADC (COEE) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

a4 A aa s

R L R RSt M A A Raiad Sie Hina ews Sn-a 4 v T TT——r

YT T T T Y W W T v T v w——w— v - — — =

]
i
1

UNCLASSIFIED
SECURITY CLASSIFICATION OF TwIS PAGE
pe— —
REPORT DOCUMENTATION PAGE
1a REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A
28 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for public release; distributiom
2. DECLASSIFICATION/DOWNGAADING SCHEDULE unlimited
N/A
4. PERFOAMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBEA(S)
N/a RADC-TR-84-53, Vol II (of two) :
6a NAME OF PERFORMING ORGANIZATION 5. OFFICE SYMBOL | 7a. NAME OF MONITOAING ORGANIZATION
11t applicadie) .
Boeing A?rcspace Company Rome Air Development Center (COEE) ’
Engineering Technologyv) J
6c. ADORESS (City. State snd ZIP Code: 7b. ADDRESS (City, State and ZIP Coda) ®
Seattle WA 98124 Griffiss AFD NY 13441
o
: 8s. NAME CF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PAOCUREMENT INSTAUMENT IDENTIFICATION NUMBER T
cacan Tt T (I epplicsbia) ’ - Ty
Rome Air Development Center COEE F30602-82-C-005¢ ST
F 8c. ADDRESS (City, State and ZIP Code} 10. SOURCE OF FUNDING NOS. - ° - ‘J
& Griffiss AFB NY 13441 Eeent N, PROmCT TAS woRK uNiT IR
f 63728F 2527 02 09
3 11 TITLE (inciude Secunty Clasmifi) S
t SOFTWARE TEST HANDBOOK Software Test Guidebook o]
12. PERSONAL AUTHOA(S) Lo
Edward Presson . :
13a TYPE OF AEPORT 130 TIME COVERED 14. OATE GF REPORT (Yr, Ma,, Dey/ 15 PAGE COUNT
Final smOoM Mar 82 10 _Sen 83| March 1984 288
16. SUPPLEMENTARY NOTATION
N/A
17 COSAT! CODES 18. SUBJECT TERMS (Connnue on reverse if necesary ond identify by dock number)
L1 1% -] gmoue SUS. GA. Testing
39 02 Software ®
Computer Programs ST A
19. ABSTRACT (Continue on revarse if necessary and identify by block number) . .
“)he purpose of the Software Test Handbook effort was to provide Air Force software
developers with guidelines and methodology for the effective use of higher order language
(HOL) software testing techniques and in the selection of automated tools for the testing
of coaputer programs. .
The effort resulted in a two volume final technical report. Volume I, the Final Technical
Report, describes the total contractual effort. This report, Volume IT - Software Test
Guidebook, contains the guidelines and methodology resulting from the effort. In addition,
it contains the following: (l) summary descriptions of the testing techniques, (2) an
extensive bibliographv, (3) tvpical paragraphs that can be included in software development
Statements of Work (SOW) to specify the use of advanced software testing techniques by the
contractor during the testing and verification phases of a contracted software development,
and (4) a cross-reference to government and commericallv available catalogs listing auto-
ted test toals that support the various testing techniques. o
20. DISTRIBUTION/AVAILABILITY OF AGSTRACT 21. ABSTAACT SECUAITY c\\ssmcu'lon
UNCLASSIPIEO/UNLIMITED OO same as mer.) oTic usens O UNCLASSIFIED
225 NAME OF AESPONS(BLE INOIVIDUAL 220 TELEPHONE NUMBER 22c. OFFICE SYMBOL
- tInclude Aree Code)
“rank S. LaMonica (315) 330-3977 RADC (COEE)
DO FORM 1473, 83 APR €0 TION OF 1 JAN 73 1S OBSOLETE. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

S AL S
(PRI, PP

DA .
P, NP P,

.
. - - - . - . - - -
PP oAt . 5 B .
lalalalatal el al el ain ata At et o At At et

N R R YR L B At o -
~ . . . S . MRS At - - . Y

PREFACE

The Software Test Guidebook provides guidelines for the selection of state-of-the-art
HOL software testing techniques appropriate to various software development environ-
ments and various types of software. The guidelines cover the DT&E, OT&E, and V&V
phases, and may be used as an adjunct during maintenance phases. These guidelines are
incorporated in a table-driven format that define increasingly thorough levels of testing

based on a testing "level of confidence.”

The guidebook provides summary descriptions of all the testing techniques, and an
extensive bibliography. It includes typical paragraphs than can be included in Air Force
software developiment statements-of-work to specify the use of advanced software testing
techniques by the contractor during the testing and verification phases of a contracted
development. A cross reference to catalogs listing automated tools provide a method for

locating software tools that support the selected testing approaches.

{ Accession For

NTIS CFAI
pTIC To

. U:]-’.‘..".’_]"'lfi'_".’f? Y --';‘i]_

DTIC e
ELECTEV -
Q NQOV 6 1984 A Di:t‘ i' lw;'.‘ 'iV./ . i

.
- - - - By “ - - a . - - DL A
SR e N T N S T

TABLE OF CONTENTS

ABBREVIATIONS
SOFTWARE TEST GUIDEBOOK
1.1 Introduction
1.2 Outline of the Guidebook
1.3 Applications of the Guidebook
1.3.1 Organic Software Testing
1.3.2 Preparation of a Statement of Work
1.3.3 Evaluation of Proposals
1.4 Considerations Used in Software Testing Technique Selection Tables
1.4.1 Error Detection and Location Capability
1.4.2 Side Effects and Benefits
1.4.3 Cost and Schedule Impact
1.4.4 Management Impact
[.4.5 Training
1.4.6 Usage Constraints
1.4.7 Typical Computer Resources
1.4.8 Level of Human Interaction
1.4.9 Usefulness of Technique in Supporting Modern

Programming Practices

SELECTION OF SOFTWARE TESTING TECHNIQUES
2.1 Three Paths of Technique Selection
2.'2 Path 1 -Software Category

2.2.1 Step |

2.2,2 Step?2

2.2.3 Step 3

1-1
1-1
1-2
1-4

1-4 e
1-4 -
1-5
1-5
1-5)
1-5 T
1-5
1-6
1-6
1-6
1-6
1-7

1-7

2-1

2-2
2-5
2-9
2-9

2.2.4 Step 4 2-10
2.3 Path 2—Test Phase and Test Objective 2-14
2.3.1 Step | 2-15
2.3.2 Step?2 2-15

.........................

TABLE OF CONTENTS (continued)

2.3.3 Step 3
2.3.4 Steph
2.4 Path 3-Software Error Category
2.4.1 Stepl
2.4.2 Step 2
2.5 Guidelines for Final Selection of Testing Techniques
2.5.1 Technique Suitability
2.5.2 Costs
2.5.3 Special Training
2.5.4 Special Hardware
2.5.5 Special Software
2.5.6 Input Requirements
2.5.7 Output Requirements
2.5.8 Candidate Testing Techniques

2.6 Selection of Support Tools

2.7 Test Completion Criteria

2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.7.6

Approach | —Test Until No Errors Remain
Approach 2—Test Until a Method Is Exhausted
Approach 3—Set Error Count Goals

Approach 4 —Error Prediction Models
Approach 5—Plotting Errors

Summary

2.8 Example Problem

2.8.1
2.8.2
2.8.3
2.8.4
2.8.5

Path 1
Path 2
Path 3
Final Technique Selection

Identification of Test Tools

2.9 Blank Worksheets

iii

2-15
2-16
2-22
2-22
2-22
2-30
2-30
2-30
2-30
2-30
2-31
2-31
2-31
2-31
2-31
2-33
2-33
2-33
2-34
2-34
2-35
2-35
2-35
2-36
2-38
2-38
2-38
2-38
2-40

b
)
}
l TABLE OF CONTENTS (continued)
:
]
]
]

Page

3.0 AVAILABILITY OF SOFTWARE TESTING TOOLS 3-1
3.1 Cross-References 3-1
3.2 RCI Software Tools Directory 3-2
3.3 SRA Software Engineering Automated Tools Index 3-6
3.4 Software Development Tools (NBS) 3-7
3.5 Additional Sources of Information 3-12
3.5.1 Other Catalogs 3-12

3.5.2 Other References 3-13

4.0 STATE-OF-THE-ART SOFTWARE TESTING TECHNIQUES 4-1
4.1 Introduction 4-1
4.2 Summary Descriptions of the Taxonomy 4-1
4.2,1 Static Analysis 4-2

4.2.2 Dynamic Analysis 4-4
4.2.2.1 Test Preparation 4-5

4.2.2.2 Test Execution 4-5

4.2.2.3 Test Analyses 4-6

4.2.2.4 Dynamic Analysis Techniques 4-6

4.2.3 Symbolic Testing 4-8

4.2.4 Formal Analysis 4-8

4.3 Detailed Technique Descriptions and Characteristics 4-10
4.3.1 Static Analysis Techniques 4-11
4.3.1.1 Code Reviews and Walkthroughs 4-11

4.3.1.1.1 Peer Review 4-11

4.3.1.1.2 Formal Review 4-21

4.3.1.2 Error and Anomaly Detection Techniques 4-27

4.3.1.2.1 Code Auditing 4-27

4.3.1.2.2 Interface Checking 4-31

4.3.1.2.3 Physical Units Checking 4-33

4.3.1.2.4 Data Flow Analysis 4-36

4.3.1.3 Structure Analysis Techniques and Documentation 4-39

4.3.1.3.1 Structure Analysis 4-40

|

TABLE OF CONTENTS (continued)

4.3.1.3.2

Documentation

4.3.1.4 Program Quality Analysis

4.3.1.4.1
4.3.1.4.2
4.3.1.4.3

Halstead's Software Science

McCabe's Cyclomatic Number

Software Quality Measurement

4.3.1.5 Input Space Partitioning

4.3.1.5.1
4.3.1.5.2
4.3.1.5.3

Path Analysis
Domain Testing

Partition Analysis

4.3.1.6 Data-Flow Guided Testing
4.3.2 Dynamic Analysis Techniques

4.3.2.1 Instrumentation-Based Testing

4.3.2.1.1
4.3.2.1.2

4.3.2.1.3
4.3.2.1.4

Path and Structural Analysis

Performance Measurement

4.3.2.1.2.1 Execution Time and
Resource Analysis

4.3.2.1.2.2 Algorithm Complexity
Analysis

Executable Assertion Testing

Interactive Test and Debug Aids

4.3.2.2 Random Testing
4.3.2.3 Functional Testing

4.3.2.3.1

4.3.2.3.2

Specification-Based Functional
Testing
Cause-Effect Graphing

4.3.2.4 Mutation Testing

4.3.2.4.1
4.3.2.4.2

Mutation Analysis

Error Seeding

4.3.2.5 Real-Time Testing

4.3.3 Symbolic Testing
4.3.4 Formal Analysis
4.4 Support Techniques

..........

Page

4-43
4-43
4-43
u-47
4-51
4-55
4-55
4-59
4-61
4-63
4-65
4-65
4-66
4-71

4-71

4-76
4-83
4-93
4-96
4-98

4-98
4-103
4-108
4-108
4-114
4-117
4-120
4-124
4-128

]

et
Ly e
. .o
. . g
. [.
» . .-‘." Lol
! AT
 SOVRPRCION. W NV URCI I VIR WO N S

AP B
Abddd Bode bl A

B 2P

M) B

L
4

‘‘‘‘‘‘

5.0

6.0

TABLE OF CONTENTS (continued)

4.4.1 Test Data Generators
4.4.2 Test Result Analyzers
4.4.3 Test Management Software
4.4.4 Test Completion Criteria Software
4.4.5 Test Drivers and Test Harnesses
4.4.6 Comparators

4.5 Miscellaneous Testing Methods
4.5.1 Requirements Tracing
4.5.2 Requirements Analysis
4.5.3 Regression Testing

4.6 Bibliography

ACQUISITION LIFE CYCLE
5.1 Air Force Phased Acquisition
5.1.1 Test and Evaluation During the Acquisition Process
5.0.1.1 Development Test and Evaluation
5.1.1.2 Operational Test and Evaluation
5.1.2 Computer Program Verification and Validation
5.1.2.1 Design Phase
5.1.2.2 Code and Checkout Phase
5.1.2.3 Test and Integration Phase
5.1.2.4 Operational and Support Phase

SAMPLE REQUIREMENT PARAGRAPHS FOR STATEMENTS OF WORK
6.1 Introduction

6.2 Tightly Constrained—Direct Specification

6.3 Tightly Constrained—Subset Specification

6.4 Moderately Constrained Specification

6.5 Loosely Constrained Specification

4-129
4-129
4-129
4-129
4-130
4-139
4-130
4-131
4-134
4-137
4-140

5-1
5-1
5-1
5-1 A
5-3 SRR
5-4
5-4
5-5
5-5

6-1)

6-1 e
6-1
6-2
6-3
6-3

...............

APPENDICES

APPENDIX INTRODUCTION

A. ARMAMENT

AVIONICS

COMMAND, CONTROL, AND COMMUNICATION
MISSILE/SPACE

MISSION/FORCE MANAGEMENT

»

moo0

e - - HRS. - L

. vii

e e Je S
AdeadaLar e Lo

LIST OF FIGURES

Page

1.2-1 Guidebook Organization 1-3
2-1 Three Paths for Selecting Software Testing Techniques 2-2
2-2 Path 1—Selection of Software Testing Techniques by Software

Category 2-4
2-3 Testing Confidence Level 2-6
2-4 How to Compute Testing Confidence Level (TCL) 2-7
2-5 TCL Worksheet for Path | 2-8
2-6 Selection Worksheet for Path 1 2-11
2-7 Software Categories 2-12
2-8 Software Categories and Testing Techniques 2-14
2-9 Path 2—Selection of Software Testing Techniques by Test Phase

or Test Objective 2-1
2-10 Test Phases and their Objectives 2-
2-11 Test Phases and Test Objectives and Testing Techniques 2- 4
2-12 Selection Worksheet for Path 2 2-21
2-13 Path 3—Selection of Software Testing Techniques by Software

Error Category 2-23
2-14 Software Errors and Testing Techniques 2-24
2-15 Selection Worksheet for Path 3 2-29
2-16 Testing Techniques and Support Techniques 2-32
2-17 Example TCL Worksheet 2-37
2-18 Example Selection Worksheet 2-39
2-19 TCL Worksheet 2-41
2-20 Selection Worksheet 2-42
4.2-1 General Form of Static Analysis 4-2
4.2-2 Module Interface Consistency Check 4-3
4.2-3 General Form of Dynamic Analysis 4-4
4.,2-4 General Form of a Formal Functional Analysis 4-9
4.3.1.4-1 Control Graphs of Language Structures 4-47
4.3.1.4-2 Software Quality Metrics Framework 4-51
4.3.1.5-1 Factorial Program 4-56
4.3.1.5-2 Description Tree 4-56

4.3.1.5-3 Implicit Input Data Description 4-57

viii

nr‘rf“.vv Y

v

r.
..
n
"
=,
.
.‘.
4

D
b

,

4.3.1.5-4
4.3.1.5-5
4.3.1.5-6
4.3.1.5-7
4.3.1.5-8
4.3.2.1-1
4.3.2.1-2
4.3.2.3-1
4.3.2.3-2
5.1-1

3.2-1
3.3-1
3.4-1
4.2-1

BT N B et B 4 v Ty

LIST OF FIGURES

Partially Explicit Description

Explicit Description

Partially Explicit Subset Description

Explicit Subset Description

Explicit Subset Description Solution

Source Program With Untranslated Assertions
Translated Assertions

Decision Table

Test Cases

The Scope of Verification, Validation, and Certification
and Software Life Cycle Phases vs. Test Phases

LIST OF TABLES

RCI Tool Directory Cross-Reference
SRA Too! Index Cross-Reference
NBS Catalog Cross-Reference
Taxonomy of Testing Techniques

ix

T T T e e

-4
9

4-57
4-57
4-58 T
4-58 PR
4-58
4-88)
4-89 _
4-107 -
4-107 ‘

5-2 { o

L .)
Moa s Mma anaaa

ABBREVIATIONS
AD Armament Division
ADC Aerospace Defense Center
: ADP automatic data processing
E AFTI advanced fighter technology integration
‘ ALCM air-launched cruise missile
ASD Aeronautical Systems Division
ATE automatic test equipment
ATO Air Tasking Order
BITS built-in test
C3 command, control, and communications
CAFMS Computer Assisted Air Force Management System
CCPDS Command Center Processing and Display System
CINCSAC Commander-in-Chief Strategic Air Command
CITS central integrated test systems
COM computer output microfiche
COSMIC (Computer Software Management and Software Organization)
CPC computer program component
CPCl computer program configuration item
CPU central processor unit , ° -
CRISP computer resources integrated support plan ESRRRE “
CSC computer software component
C5CI computer software configuration item
CSOC Consolidated Space Operations Center

DACS Data and Analysis Center for Software
DGZ designated ground zero

DID data item description

DT&E development test and evaluation
DT&V developmen* test and verification

EDP electronic data processing

-‘v '?'-v.

. T
e,

e 0% o 4
Pt i 400
.)

,V“‘—"rrr'

ELINT

FCA
FOT&E
FSEC

HDM
HOL

ICBM
ICP
IDHS
IOT&E
IUS
IV&V

JINTACCS
JSCS
JSTPS

LRU

MATE

NBS
NMCC

&S
OFP
OPR
OT&E

PCA
PDR
PROM

electronic intelligence : S

functional configuration audit o e]
follow-on operational test and evaluation

Federal Software Exchange Center ; T

hierarchical design methodology O
higher order language

intercontinental ballistic missile
International Computer Programs, Inc.
intelligence data handling system
initial operational test and evaluation

P

inertial upper stage

independent verification and validation ST

Joint Interoperable Tactical Air Command and Control System
Joint Strategic Connectivity Staff
Joint Strategic Target Planning Staff

line replaceable unit
Modular Automatic Test Equipment (program)

National Bureau of Standards

National Military Command Center

operations and support
operational flight programs
Office of Primary Responsibility

operational test and evaluation

physical configuration audit
preliminary design review

programmable read-only memory

Xi

QOT&E

RADC
RCI
RFP

SAC
SCF
SD
SDL
SILTF
SIoP
SLBM
SOLARS
SOwW
SPO
SRA

SREM/REVS

SRU

T&E

TAC
TACC
TACS
TCL

TRD
TRICOMS
TTY

USAF
UuT

V&V

WWMCCS

S

v 0 .

o

BRDANREAIABIIA A,

qualification operational test and evaluation

Rome Air Development Center
Reifer Consultants, Inc.

request for proposal

Strategic Air Command

Satellite Control Facility

Space Division

software development laboratory

System Integration Laboratory and Test Facility
Single Integrated Operational Plan
submarine-launched ballistic missile

SAC On-Line Analysis and Retrieval System
statement of work

System Program Office

Software Research Associates

Software Requirements Engineering Methodology/Requirement Engineering
Validation System

shop replaceable unit

test and evaluation

Tactical Air Command
Tactical Air Control Center
Tactical Air Control System
testing confidence level

Test Requirements Document
Triad Computer System

teletypewriter

United States Air Force

unit under test

verification and validation

Worldwide Military Command and Control System

xii

AR ACRIEIMACIL AN b e S-S Sne Syts Ja Jre Joan B avus 2ves e) o e,
L e T Y n

1.0 SOFTWARE TEST GUIDEBOOK R
1.1 INTRODUCTION SR]
In the past decade many specialized software testing philosophies and testing techniques
have evolved. Many of these techniques have been implemented as computer programs;
that is, they have been automated. Automated testing tools can enhance the effective-

ness of a software test phase. _ L 2 !

The Software Test Guidebook is designed to assist Air Force software developers and

k maintainers in the effective use of higher order language (HOL) software testing . '.:-j

‘ techniques and in the selection of automated tools for the testing of computer programs. . p M:
Using this guidebook, the user can select the appropriate state-of-the-art testing ‘
techniques for specific software and determine the availability of automated testing tools e 1
that implement the selected techniques. Guidelines and methodologies are specified for R o _J
understanding and applying automated state-of-the-art testing techniques in various types N

of Air Force software development and support environments.

E Guidelines provided in the guidebook can be applied during the computer software coding
and checkout, test and integration, and operation and support phases of development test

and evaluation (DT&E), operational test and evaluation (OT&E), and verification and
validation (V&V), as defined in AFR 80-14, "Research and Development Test and
E Evaluation," and AFR 800-14, Volume II, "Acquisition and Support Procedures for
Computer Resources in Systems". The guidebook may also be useful in maintenance and

modification environments as an adjunct to test planning.

The method by which the user selects testing techniques is based on the use of rating
tables found in section 2.0. These tables permit a compact representation of many

considerations. A discussion of these considerations is found in section 1.4.

The evaluation of testing techniques is based on a survey of current technical literature,

such as journals, conference proceedings, and textbooks. The evaluation is also based on
surveys of software engineers who are experienced in software testing and in the use of
modern testing techniques and automated test tools. The testing technique recommenda-
tions are based on quantitative and qualitative information and should be regarded as

guidelines, not as rigid rules.

1-1

BRSPS

oo e
- " . . . " .t N_'- . A L. ;"-.‘. -
- e ot s b a0 N am e N n A ol

BRI B At W T e el S e e e e T
LR AN WIS T 30 G TP R T I T S PRI

3

g
Fl

o R e

et . N

S I e
et a et sl al o Al A

- — - —— = M AP et oan I AR VS Ve ol M SNt SRS e e A e oS N A

1.2 OUTLINE OF THE GUIDEBOOK

The Software Test Guidebook comprises six major sections and five appendices, as shown

in figure 1.2-1. A brief summary of its contents is found in the following paragraphs.

Section 1.0 states the objectives of the guidebook, describes its outline and content, and

discusses its applications.

Section 2.0 presents a compact set of instructions, guidelines, and tables for selecting
software testing techniques. It also includes sections on the selection of software support

tools and on test completion criteria.

Section 3.0 contains a list of the major catalogs that provide information on automated
software tools. It has an index for determining the availability of existing software tools

that support the techniques selected by the guidebook user.

Section 4.0 defines the terms used in the taxonomy of testing techniques and gives a
detailed description of state-of-the-art testing techniques. These descriptions discuss the
technique and related considerations such as cost, user training, and hardware require-

ments.

Section 5.0 discusses the software life cycle, software acquisition cycle, and the normal
phases of testing, as defined in AFR 80-14 and 800-14. This section is a supplement to

the guidebook and does not replace the Air Force regulations.

Section 6.0 has several model statement of work (SOW) paragraphs that may be used as

prototypes by Air Force acquisition managers in preparing a request for proposal (RFP).

The appendices describe five Air Force mission areas: armament; avionics; command,
control, and communication (C3); missile/space; and mission/force management. Each
appendix lists software functions characteristic of the computer programs developed
within that mission. Each function is classified according to the software categories used

in section 2.0.

AT,

APPENDIX €
MISSION FORCE
MANAGEMENT
APPENDIX D
MISSILE/SPACE
APPENDIX C
NP
APPENDIX 8
AVIONICS
o
3 APPENDIX A
- ARMAMENT
t SECTION 6
SAMPLE
STATEMENT OF
WORK
PARAGRAPHS
SECTION 5
SOFTWARE
ACQUISITION
LIFECYCLE
SECTION 4
TEST
TECHNIQUE
DESCRIPTIONS
SECTION 3
HOW TO IDENTIFY
AVAILABLE
AUTOMATED
TOOLS
SECTION 2
HOW TO SELECT
TESTING
TECHNIQUES

SECTION 1
INTRODUCTION

Figure 1.2-1. Guidebook Organization

——

e

v

N aE oo aEn e g _aan e e

1.3 APPLICATIONS OF THE GUIDEBOOK

The principal purpose of this guidebook is to select state-of-the-art testing techniques
for organic software testing. In addition, the guidebook can be used for preparation of a

Statement of Work and for evaluation of proposals.

All three applications of the guidebook use the tables and guidelines of section 2.0 to

determine appropriate software testing techniques.

1.3.1 Organic Software Testing

The guidebook can be used as an aid in planning organic software testing and can
recommend state-of-the-art software testing techniques based on any of three different
kinds of information:

a. The type of software being tested.

b. The test phase or test objective.

C. Knowledge of specific kinds of software errors to be tested.

The guidebook has five appendices to categorize software and environment characteristics
of five Air Force mission areas. The guidebook will provide a candidate list of state-of-

the-art testing techniques that can be applied to the specific software to be tested.
1.3.2 Preparation of a Statement of Work

The guidebook can be used in preparing SOW paragraphs for use in an RFP. As described
in section 1.3.1, the guidebook can be used to identify applicable state-of-the-art testing
techniques. The guidebook also provides sample SOW paragraphs in section 6.0 for
defining levels of testing at various degrees of formal contractual control. An Air Force
acquisition manager can use the guidebook to select the types and levels of testing and to

prepare SOW paragraphs with corresponding requirements.
1.3.3 Evaluation of Proposals

The guidebook can be used by an Air Force software acquisition manager to evaluate

proposals. The acquisition manager can consider the type of software and its mission,

AP PR RO o Lol S et am s o, - ——

-
“'

criticality, and environment and use the guidebook to determine recommended state-of-
the-art software testing techniques. The proposal test plan can then be evaluated by
comparing it to the guidebook recommendations, providing an additional benchmark in the

proposal evaluation.

1.6 CONSIDERATIONS USED IN SOFTWARE TESTING TECHNIQUES SELECTION
TABLES

Software testing techniques are selected using the tables in section 2.0. So learning the
selection process is a matter of learning to use the tables.

A methodology based on the use of tables was adopted because it simplifies the selection
process and condenses a large amount of information. The tables can be updated easily as

state-of-the-art software testing continues to evolve.

b Each table entry represents many considerations. The tables were constructed based on

state-of-the-art software testing theory and a survey of current Air Force mission

} application test requirements. The following considerations were used in rating and
h evaluating the testing techniques.

1.4.1 Error Detection and Location Capability

This is the relative success at detection of specific error types. It is also the precision
with which the technique locates the software error so that it can be understood,
analyzed, and corrected efficiently.

1.8.2 Side Effects and Benefits

These are additional benefits of the technique. For example, automation of some
techniques may provide output that can be used in the product documentation of the

software being tested.

1.4.3 Cost and Schedule Impact

A testing technique may have several significant cost impacts. The first is its

developrnent or acquisition cost; the second is its cost of application. The application

) e)) R

PP ot o
AR, L N T
e N RN PP RN o, - R T Sl S e T O
PCPTIACPE N PGPS SN PV, o R S A R S AR T

cost may result from computer resources required by the technique or by special skills or
training required (discussed separately in a following paragraph). The ultimate cost
benefit will be in the savings derived from a reliable software product during the
operational phase. That is, both costly failures and the cost of correcting undetected
errors will be reduced. Side benefits, such as output that can be used as part of the

documentation, have a positive schedule benefit.
1.4.4 Management Impact

All techniques were evaluated for their benefit to management. Some approaches provide
visibility on the progress of the software development project. If a technique provides
additional visibility to management, it was rated more productive. It should be noted that
some techniques, such as peer code review, specifically exclude management visibility in

order to achieve their goal.
1.4.5 Training

Some techniques are very difficult to understand and may require extensive training of
personnel, using personnel with special skills (algebraic and symbolic analysis). Other
techniques use common skills that are simple to apply (e.g., design and code walk-
throughs).

1.4.6 Usage Constraints

General usage constraints were considered in evaluating the techniques. Generic
techniques were evaluated; no specific automated tools were included. At present, an
automated tool incorporating a technique may be available only on the computers of a
specific vendor, which would considerably limit availability and applicability of that tool.
In the future, however, tools incorporating the technique may be available on many
machines. The tables in the guidebook rate generic software testing techniques, not

specific software test tools.
1.8.7 Typical Computer Resources

Each technique was evaluated in terms of its computer resource (time and storage)

requirements compared to the potential benefits. Some techniques such as peer code

1-6

R P T T TR S R AL MY WAL PR AP PP R P
R R S U PP S Vil Sl Sy WA SLAPLY VLA N ISR I o PPN . P Sl U PR Pe

.

. k]] . B
L R N
P n el alals

g
A

R o
A s Xas'Sed o detk

A
o
e atatata

-

"3

.

LA
LI

1.
» Y

e e T T e T e e T T e T T Y T I Y A Y T Y S T T e e ey w e v e — -

review require little or no computer resources; whereas, other techniques such as random
or real-time testing may use substantial amounts of central processor unit (CPU) time,
primary and secondary storage, or a considerable number of other computer resources.

1.8.83 Level of Human Interaction

The techniques included in the tables vary in the required level of human interaction.
Human interaction must be considered at two levels: (1) a comparison of the amount of
test engineer time required versus the potential benefits and (2) the degree of expertise
needed to effectively use the technique. The greater the relative amount of time or level
of expertise, the lower the technique rating.

1.8.9 Usefulness of Technique in Supporting Modern Programming Practices

If the technique encourages modern programming practices used by the software

developers the technique was given a relatively high rating.

y—r— w - e =

B T R TR IR T T T e e Y - - -~

. tt‘ IR

2.0 SELECTION OF SOFTWARE TESTING TECHNIQUES
2.1 THREE PATHS OF TECHNIQUE SELECTION

This section provides step-by-step instructions for selecting software testing techniques
appropriate to software products and conditions, such as type of software or development
phase. In addition, this section discusses important considerations in selecting testing
techniques. Extended discussions of the techniques are provided in section 4.0.

The guidebook methodology provides three paths, shown in figure 2-1, that can be
followed to determine appropriate software testing techniques. If possible, all three paths
should be used to ensure that no relevant software techniques are omitted from

consideration.

The three paths offered for the selection of testing techniques should not be confused
with the three major applications of the guidebook described in section i.3. All three
paths are appropriate for each application.

In the first path (sec. 2.2) the selection of software testing techniques is based principally
on the category of software being tested. For example, a real-time executive would
require different testing approaches than those used for a postmission data analysis
computer program.

The second path (sec. 2.3) uses information from the test phase and test objectives to
select testing techniques. For example, an extensive real-time test would be appropriate
after the real-time executive software had been successfully integrated and preliminary
testing completed. The real-time test normally would not be appropriate during the
module testing phase. The software acquisition lifecycle and associated test phases are

described in section 5.0.
The third path (sec. 2.4) selects testing techniques based on the knowledge of software
error categories that are currently occurring or have previously occurred on similar

software development projects.

Use as many of the three paths as you have information to support, because each path

2-1

[FOIPRCI S -

-— A

PATH 1

v

CRagh 2 St danat ok e S

COMPUTE TCL AND
CHOOSE TESTING
TECHNIQUES BASED
ON SOFTWARE
CATEGORY

----------- —-

PATH 2

‘

SECTION 2.2

COMPUTE TCL AND
CHOOSE TESTING
TECHNIQUES BASED
ON TEST PHASE OR
TEST OBJECTIVE

SECTION 2.3

GUIDELINES FOR FINAL
TECHNIQUE SELECTION

SECTION 2.5

SELECT SUPPORT
SOFTWARE

SECTION 2.6

IDENTIFY SPECIFIC
AUTOMATED TOOLS
FOR SELECTED TESTING
TECHNIQUES

SECTION 3.0

WP —

PATH 3

¢

CHOOSE TESTING
TECHNIQUES
BASED ON TYPES
OF SOFTWARE
ERRORS

SECTION 2.4

Figure 2-1. Three Paths for Selecting Software Testing Techniques

o

T

I 2T

[RAZE -
s A T

'.‘.'~.-

v T e v,

b
FL‘

»

VL
»

T—r—“rr."* T
D' B
a0 N O S ot

S dradl
N
‘

- e VYTV Y '.1'77.
AN [P
' et e

RSN

introduces unique considerations. No technique used alone has proved effective in
detecting and isolating all software errors, so no one technique or methodology is a cure-
all.

Section 2.5 presents guidelines for final selection of testing techniques from the candidate
list built using paths 1, 2, and 3. Section 2.6 contains a table to aid in selecting support
tools appropriate to the selected techniques. Section 2.7 discusses considerations
concerning when to stop testing, and section 2.8 has an example of the application of the
three paths used in this guidebook to select testing techniques.

The three paths use tables to select software testing techniques. There are five basic
tables. Figure 2-3 and the TCL worksheet allow the reader to compute the testing
confidence level (TCL) appropriate for the software to be tested. This TCL is used in two
subsequent tables. Figure 2-7 lists 18 software categories used in this guidebook. Figure
2-8 uses the TCL and the category of software to be tested in order to select testing
techniques. Figure 2-11 uses the TCL and the test phase or test objectives to accomplish
the same goal. Figure 2-14 rates software testing techniques for their ability to detect

various categories of software errors.

Additional information regarding the benefits and disadvantages of a candidate technique
can be found in section 4.0, Consider how each candidate testing technique will impact

other techniques and how they reinforce or conflict with each other.

Use of this guidebook will provide a set of candidate software testing techniques
applicable to the software testing problem at hand. However, simply because the
guidebook recommends a technique does not always mean that it is feasible or cost
effective in your environment. Judgment must be used in selecting techniques that are
both applicable and feasible. The expanded technique descriptions provided in section 4.0

will aid in this determination.

2.2 PATH 1-SOFTWARE CATEGORY

An outline of this path is shown in figure 2-2. The individual steps are discussed in detail

in the following paragraphs.

2-3

Y

o i
..
o
-

?
+
)
!
ek

i Ai10633e) asemyos Aq sanbiuydaj bunisa] 1emyjos 40 UONIAAS-| Yled 'Z-Z 34nbiy
. 9-Z 34NO I 8- NI
2 X 8l
D1 5 ailvy .
-, X SINDINHDAL 103135 °
133HSHYOM NO 1 L
SINDINHDIL °
- AI3IHD t
g @ X SINDINHDIL ONILSIL z
. d31S . 31VINdOY¥ddV INIWYILIC
__ o O O TN - ey
3
g AY0931YD
H1vd @ SINDINHD3L ONIISIL AYMLIOS
2 d3l1s
5 .
. A¥0O93ILYD
g JHVYMLL0S 1137135 Ol L-Z 3¥NOH
XION3ddV NOISSIW 35N T -
_ (1¥NOI1dO) ' 6 !
g $3DION3ddV NOISSIW -€ > * . o~
[L
- - . .
ININVWNYEY . .
- AYO931YD £l °
. SJINOIAV JUVMLIOS 7 £
b 1237138 '
Z
_ b}
i £ @ 01 l
“ 3IVAS/INSSIW dals
LNIWIOVYNYN
3D¥O04/NOISSIN €-Z N9
i
! £
(121) 13731 z
3DN3IAIINOD '
i ONILS31 INIWY3L3Q o
ﬁ_ ®
. dais
P
-
[
o h.Ab_rl . . . a .» L a_ ..

2.2.1 Step 1

The first step is to choose a testing confidence level appropriate for the software product
you are considering. The TCL is determined by using figure 2-3. The worksheet
illustrating the TCL computation is shown in figure 2-5. Section 2.9 contains masters of

blank worksheets.

Different TCL's may be assigned to an individual module, as well as to a complete
software entity such as a computer program component (CPC) or computer program
configuration item (CPCI). (The proposed MIL-STD-SDS uses the new terms, computer
software component (CSC) and computer software configuration item (CSCI), for CPC and
CPCL) An example of such usage would be a software system containing a secure
operating system, which requires a very high TCL, and ordinary software controlled by

that operating system, where a low TCL might be appropriate.

Three major categories of considerations are used in determining a TCL: project,
software, and test. Each column in figure 2-3 corresponds to one consideration. For
example, the first column under "Project considerations" relates to cost; the second
column under "Test considerations" relates to the comprehensiveness of testing required.
For each column in the table, locate the description that best fits the software to be
tested.
The first column describes four cost situations. If the most applicable description was
found in the second box from the top of the column entitled "Normal cost constraints,"

then a TCL value of | would be appropriate for that consideration.

Evaluate a TCL for each column in the table. When completed, you should have eight

TCL values. Compute the average of these eight values; the result is the final TCL. This R

value will be used in step 2. The process is illustrated in figure 2-4.

If one or more of the considerations have more weight than the others, then you may wish SRRy
to compute a weighted average. For example, if the "Criticality" column is of primary
importance, then you might weight it by some factor (e.g., a factor of 5). If no weights

are needed, simply set all weighting factors to l.

2-5

B

Mbe hasracand i%a mas a o

W SN G |

. ' .
UL T S TOUY B S RET §

A .
s P

i, . B
Locbocd Lol d’ &' s

AU

g

L At 8

- -

13797 duapyuo) bunsay ‘g-z ainbiy

ONILSIL ANV
IHL-40-3LVIS
ETERPTITOS) 3NOIHIS
‘Q3LVAITVA SINS3¥ | IN3WAOI3AIG 153101 1IvdWI QINIVELISNOINN
JYVYML40S ANLDNGXI BYIdIIV] IIHIO¥ISVIVD ¥3IA0 | QuvH 'NOLLNIOS LON 1M ATIAILVIIY
£ WILY) NDISIO WS LON SYO¥Y3 31815504 | $10MINOD GO X31dW0d | SINIWININD3IY ‘WOL1IV4
'STONINOD | S¥OWY3 31815504 WwNaISY | 'SNOILYIINddY QILDVHINOD 'W318084d 133130 ¥OWY¥3 ALIIVSMINDI | INVNINOOINY
¥YIDNN 1V 113130 40 IDNISINd IVDILIND ATHOIN ATIVHINID 1INd13410 IUNOILIGAY | LHODITS ‘¥WVIDNN 1ON 41502
dVSY QIAOWIY
ONINNY1d SHOWY) SM3IIAIY
NOISSHN | SuOBY3 318IS50d WNOIS Y TYWHO04
b4 $IINOIAY 1v1d3130 ‘18v143DDV €3S SIOYINOD SINIVHASNOD
1§ STV ‘QILVANVA | NOISSIW 133443 € SINOIAV | IWNLIVHINODD ALIX31dNOD 3INQIHIS ALINBIXIYY
WY SOvMY] SNOILINNI WS | LVHL SHOBYI ON IWIL-TVIN ONOULS ¥3LVIYO WYWYON | LIVdWI NOISSIW 150 INOS
YOLVINWIS asn
IVANINNOYUIANI ViVQ IANVYS | SONNOYVINOM ws
NOUVINWIS JOIONVY | dW3L IONVHD d34d NOISSIN SI0MINOD
i Noissiw | 3aim 031vaiiva 018 404 ‘NOILINO3Y YOLIVYINOD
‘WINIWOI | SINIWIWNDIM | QILON SHOMY]I viva ‘WS ONOULS ALIXI1dWO) SINIVHISNOD LIVAWI SINIVHLSNOD
‘4O1103 ms wnaisy | aasve aNnowo O1 IVWHON 31wvuagow | 31naands Iwos IINVSINN 150 TYWHON
SNOILIGNOD
QUVINWIS TYNINON ANvI01035N
Agnis{ o1 A11I3940) N¥IINOD ‘INIWO1IAI0 1NON)3IHI O
0 3avyl '318vL SANOJS Y LONSYONNI | MS OW3a ‘WS WWEOINI | ASWI 'NOILN1OS 150 NI
NOISYIANOD S ‘SHONY3 WNAIS3Y | 1531°3dA10L08d | ‘SINIWININDIY GYVYMYO4 ININNDISSY NO SISYHdW3
‘4INID 1531 | snoneo 1d33a 40 3IN3S U4 *10MS-INO OINIIIOMI4 -LHOIVHLS | 3INAIHISIHOIL | ALNWIILI¥D ON 139018 MOV
uAN 5. WNYX] SSINIAISNIH NOILD1130 A¥091LY) ALNYWHO3 ALIX314NOD 3INAIHIS ALTYOILND 150
IINI0HNOD IMVYMLIO0S -34dW0I 1511 HONY¥3 WYMLIOS 1A30
SNOILYNIQISNOD 1§31 SNOILYYIQISNOD 7HVMLIO0S SNOILVYIQISNOD 13310¥d

2-6

-

LAN N oot s S ama oo

T

L

{12.1) 19n37 @xuapyuo) bunsay ayndwo) of Moy ‘p-Z 34nbiy

(s10L NIWNT0D 3HL 40 NVIW
JH1) 121 1D3r0¥d IOVHIAY IHL ILNdWOD NIHL @

e ——————————————— ® © ©

€101

21

L7101

(1 = LH9IIM TYINHON)
SNOILVYIAISNOD
IHL JHOIIM NIHL

]

(NWN10D)
NOILVY3IGISNOD HOV3
¥04 (101) 13A31 3IDONIAHNOD
ONILS3L INVAITIIY ANI4 @

[

SNOILVY¥3QISNOD

Sadadad od

FnA L e

2-7

r. N - Y T ———— 0 e . e ——y, T —— T

SOFTWARE TO BE TESTED ﬁf// dl/ﬁ M__ o , o

CONSIDERATIONS WEIGHT TCL PRODUCT S
(1 = NORMAL) (0,1,2,3) (WEIGHT
FIGURE 2-3 X TCL)

4

CosT

CRITICALITY

SCHEDULE

COMPLEXITY

DEVELOPMENT
FORMALITY

SOFTWARE
CATEGORY

ERROR
OETECTION

TEST

[

/

/

/

COMPREHENSIVENESS /
\

X
/
wu | M N/

TcL= _SUMOFPRODUCT _ ﬁ - /. 2 7 o o

SUM OF WEIGHT //

XSS~ W~

Figure 2-5. TCL Worksheet for Path 1

2-8

..
...
...

..
..

One of the considerations may be considered all important, and the remainder of the
column TCL ratings would then be ignored. However, in such a case, determine all of the
column TCL's to ensure that no important consideration is being overlooked. The
computed TCL may not result in a whole number (0, 1, 2, 3), but instead in values such as
0.8, 1.2, 2.3, 1.7, etc. The recommended method of handling such results is to round the
numbers toward the most highly weighted considerations. Figure 2-5 illustrates a

completed TCL worksheet.
2.2.2 Step 2

Review the list of 18 software categories found in figure 2-7 and select the category most
relevant. The categories contain groupings of similar complexity and criticality which
were derived from a survey of Air Force testing practice and software engineering
considerations. The results of these evaluations were used to recommend appropriate
testing techniques and these appear in the tables used in the next step. If you find it
difficult to identify an appropriate software category in figure 2-7, then refer to the
appendix corresponding to your mission area and find the software function that most
corresponds to the software being tested. Note the category number assigned to that
software function. This category number is then used to identify the appropriate software

category in figure 2-7.
2.2.3 Step 3

Using the TCL determined in step | and the software category chosen in step 2, use figure

2-9 to select candidate techniques as follows:

Enter the table at the left with the software category, reading to the right to select
candidate techniques. It is important to select candidate techniques that are rated less
than or equal to the TCL. For example, if the TCL = I, then note all techniques that are
rated | or 0. If the TCL = 2, then note all techniques that are rated 2, 1, or 0. If the
TCL = 3, all techniques with ratings 3, 2, 1, and 0 are applicable in this extreme case.
This is true because if the TCL is low, then only inexpensive, straightforward methods are
appropriate and the table gives this result. If the TCL is very high, then you should use all

of the basic techniques, augmented by the more expensive and esoteric techniques.

2-9

2.2.4 Step b

Indicate the candidate techniques by entering an "X" in the first column on the Selection
Worksheet as shown in figure 2-6. If possible, exercise path 2 and path 3 as described in
sections 2.3 and 2.4 to add to or verify the list of candidate testing techniques.

A completed example problem can be found in section 2.8. Figure 2-18 shows a completed
worksheet after using all three selection paths. Blank worksheets are provided in section
2.9.

The ratings in figure 2-9 were chosen to include as many candidate techniques as possible.
This approach allows the user to select testing techniques from a wide range of
candidates. The guidebook philosophy is that it is better to include an inappropriate or
experimental techriique in the candidate list — which the guidebook user may reject —

than to exclude an esoteric technique that may be useful in rare instances.

- . et - P AU IR P RPN AP Y DANCTAIENAR ST T VR S R S
AR e TN TN T SN T VN
b (L.L.L.L“-A PRV PP Y 2P WP G NP W Wil Wi Sl S S Yl Sl S . . T, LN

’ o
SOFTWARE TO BE TESTED _MWLE I
1ev .27 = 1O sorrware catecory _(79) SEMSOR & S/GNALARIL. : -

SOFTWARE TEST NOTES/]

TECHNIQUES PATH 1 PATH2 | PATH 3 COMMENTS e d
) o
Code Reviews Id Wp R
; Error/Anomaly Detection v JOL Down
_ Structure Analysis/Documentation Vv IN TH/S

Program Quality Analysis OASE

Input Space Partitioning 7////%////47///%%////////////

N=NLDIZP A—==D~n

F A. Path Analysis oM /.27
- B. Domain Testing Vv 70 /.0
» C. Partition Analysis |
& Data-Flow Guided Testing
. Instrumentation Based Testing %/////%%///%v%//%y/////////%
3 A. Path/Structural Analysis -
5 B. Performance Measurement v
'c C. Assertion Checking
A D. Debug Aids v
: Random Testing
:} Functional Testing /7
z Mutation Testing
Real-Time Testing [
SYMBOLIC TESTING
FORMAL ANALYSIS
Figure 2-6. Selection Worksheet for Path 1 e]
‘
2-11 :
R R

Software
No. category Description

L. Batch (general) Can be run as a normal batch job and
makes no unusual hardware or input-
output actions (e.g., payroll program
and wind tunnel data analysis program).
Small, throwaway programs for prelimin-
ary analysis also fit in this category.

2. Event control Does real-time processing of data result-
ing from external events. An example
might be a computer program that
processes telemetry data.

3. Process control Receives data from an external source
and issues commands to that source to
control its actions based on the received
data.

4, Procedure control Controls other software; for example, an . "]
operating system that controls execution
of time-shared and batch computer pro- , ;
grams. » ®

5. Navigation Does computation and modeling to com-
pute information required to guide an
airplane from point of origin to destina-
tion.

6. Flight dynamics Uses the functions computed by naviga-
tion software and augmented by control
theory to control the entire flight of an
aircraft.

7. Orbital dynamics Resembles navigation and flight dyna- ®
mics software, but has the additional
complexity required by orbital naviga- . R
tion, such as a more complex reference . o ;
system and the inclusion of gravitational
effects of other heavenly bodies.

8. Message processing Handles input and output messages, pro-
cessing the text or information con-
tained therein.

9. Diagnostic software Used to detect and isolate hardware
errors in the computer in which it
resides or in other hardware that can
communicate with that computer.

Figure 2-7 (Beginning)

M

LI
B
LA

&

4
.
-

No.

Software
category

Description

10.

Sensor and signal processing

Similar to that of message processing,
except that it requires greater proces-
sing, analyzing, and transforming the in-
put into a usable data processing format.

1.

Simulation

Used to simuiate an environment, mis-
sion situation, other hardware, and in-
puts from these to enable a more realis-
tic evaluation of a computer program or
a piece of hardware.

12,

Database management

Manages the storage and access of (typi-
cally large) groups of data. Such soft-
ware can also often prepare reports in
user-defined formats, based on the con-
tents of the database.

13.

Data acquisition

Receives information in real-time and
stores it in some form suitable for later
processing; for example, software that
receives data from a space probe and
files it for later analysis.

14.

Data presentation

Formats and transforms data, as neces-
sary, for convenient and understandable
displays "o humans. Typically, such
displays \ ould be for some screen pre-
sentation.

15.

Decision and planning aids

Uses artificial intelligence techniques to
provide an expert system to evaluate
data and provide additional information
and consideration for decision and
policymakers.

16.

Pattern and image processing

Used for computer image generation and
processing. Such software may analyze
terrain data and generate images based
on stored data.

17.

Computer system software

Provides services to operational
computer programs (i.e., problem
oriented).

18.

Software development tools

Provides services to aid in the develop-
ment of software (e.g., compilers,
assemblers, static and dynamic
analyzers).

Figure 2-7 (Concluded)

- d
4
. 4
9
4

et
Aodolola’.

As0Bare> a1em}jos ay) 01 ajqexjdde 1ou st anbiuyral bunsay ayl saledpin Anua juejg 310N

. RN
N
“NR
NN
£ ejo] z] o] ¢ |] TRy | ofo] o $1001 INIWJ01IAIA IHVMLIOS
el zf «J zlof ¢ o ¢ z] v el oy Hojog o JYVAMLIOS IWILSAS ¥ILNAWOD
elz] | e]o] zfof g] vfuy] o] R Y| v}O] O ONISSIDONd IOVINI B N¥3L1vd -
N N [7]
1K gelol ¢l s ¢] v Ry v ogog oo SQIY ONINNYd B NOISIDIQ 3
€elz| v|e|lo] zj o ¢ t|]¢z el zlol (Y tfolo] o NOILVINIS3¥d V1VQ £
v
e[el | efol gf o] o f e e]ejo] ¢ HEE NOILISINDDV V1va RS
£ € elo] ¢ o] o o] oRY ¢ft]r] e i) t{o] o INIWIDOVYNVIN 3SVEVLIYd 2
efe] s efof o] ¢ fIR €] e]o|0 zZl tfof o NOLLYINWIS m
b~
el e] Jz]ol| zfo| ¢ IRy ZfZ]o] o ol oJo[o ONISSIDONd TVNDIS B HOSNIS °
<
ele]| ¢l elo| e/ v] g Zj o D e]z]o] oY [o]0 O JYYMLIOS JI1SONOVIQ 5
N N w
ele| ¢f eJo| 7] o] o 7] e g| | ¢ Xy Z[t{o] o ONISS1D0Yd 3IDVSIIW ¥
W <)
ele] o] o] sf gk g v ooy b 010 0 SJIWVNAQ 1V1i840 m.
ele| o] ejo|] 7| ¢ ¢ ek | e[v | tRY | ofo] o SIINVNAQ LHDI4 m
elel o elo| €] ¢ o] ¢f e Ry)¢t e ¢ 0|0 © NOILVDIAVN v
"
ele] v elo] 2ol o of Ry ¢fefo]f ofl ool o 1041NOJ 2WNAII0¥d 2
.
el e[ofJefo] 2] o] o o] R fefof 1R ¢ o]0 © TOYLNOD $5300¥d 2
ele|l [elo] g} o] off o] TRy £l €|V | VRN M) HjO] O T0¥INOD INIAI o
~
£ € £€].0 €] T 7 1}t / el T TR\]]} 0 (WW¥3IN3ID) HOLVE v
3
\ A¥O93ILVD IYYMIIO0S L)
(g
T HE N R e R ERER Y E
21221513 |3 olo |28 lolole|El8 518 |5 |2
gle|a(e 12|81 |2 2l2(s |28 2ol |3 |2]2
2lelzfels(3|ci3|53]3 w HEREREA N R ERERERERG builsa) Youeiq uo paseq
=lal2 1212|6282 2(2[5(2]2 2oy m F] Bunes sishjeuy [eINdNISYIR
AR R R RS
HHHEEHEBHEARHEA S ENE 131 5 pores e e
wilz 3 |e a 4 1 lal®1215 (" l=zlp e |8 0 sanbiuyday bunsay 1P3)PS €2
w o = = o |4 |% |© el2 1ol = aiqer buisn paindwod (1D1) 19A3]
o 1> o |a 3 | ~ m
3% |3 L E] 5| m g w 3>UapUO) 1331 3yl O) Palejas
m < |a ﬁmu @ 121315 aie 3|qQe) Iyl Ui SIAQWNU Ay}
3z |2 2 'SON
3 3 2 T T
o
]
SISATVNY DINVNAQ SISATYNY D11 V1S

T T LN VT M WS- ey v i ow W v I
. . . LS S .

2.3 PATH 2—TEST PHASE AND TEST OBJECTIVE

Figure 2-9 shows the steps of path 2, as described in this section.

2.3.1 Step 1

- 2
If path | has already been executed, then use the previously determined testing R AR
confidence level. If not, then determine the TCL using the confidence level table and the ’ ® ' 1
directions in section 2.2 which describes path 1, step 1.
2.3.2 Step 2 o]

Use figure 2-11 to determine the appropriate testing techniques. Test phases, test
objectives, and testing techniques were related in the table using state-of-the-art testing
theory in conjunction with a survey of Air Force mission testing requirements. The
correlation between test phases and objectives is given in figure 2-10. For example, one
premise was that testing techniques used in unit and module test phases remain valid and
useful in later phases. If the test phase is known, start at the far left of the table and

: locate the relevant test phase; then proceed to the right and identify each associated test
objective. If only certain test objectives are known, locate those objectives in the center
of the table.

2.3.3 Step 3

Proceed to the right and note the appropriate testing techniques for each of the

associated test objectives.

It is important to select candidate techniques that are rated less than or equal to the
TCL. For example, if the TCL = 1, then note all techniques that are rated ! or 0. If the
TCL = 2, then note all techniques that are rated 2, 1, or 0. If the TCL = 3, all techniques
with ratings 3, 2, 1, and O are applicable in this extreme case. This is true because if the

TCL is low, then only inexpensive, straightforward methods are appropriate and the table

gives this result. If the TCL is very high, then you should use all of the basic techniques,

augmented by the more expensive and esoteric techniques. Lo

o™ P R e I I L S PR } - . - . - .
s -'_.-_.-.‘-.-.-.\.-.-.---.~‘.'~_. Ol R . - R KPSt AR S S I A P I
F PN A% AR VLY USRS PO LG L AL I S T PO Vol Gl Sl A ST Sl YO ST Ll Sl W P, VAP TR Sl Sl ot e)t e

S — —p P ——— ————— T Ty~ i

2.3.4 Step &4

Identify the candidate techniques by entering an "X" on the Selection Worksheet in column
2 for path 2. If possible, exercise path | and path 3 as described in sections 2.2 and 2.4 to
add to or verify the list of candidate testing techniques. Figure 2-11 illustrates the
worksheet after completion of Path 2.

A completed example problem can be found in Section 2.8. Figure 2-18 shows a 7
completed worksheet after using all three selection paths. Blank worksheets are provided "__.-, ‘_-: '_f'i
in Section 2.9.

-
. ." .,:"‘-'

R
S
R
'— . . "

b - . - - -t » - . -) L)
PR I N s s e e

- ., . . " o o .. o .. - » . -
e e e e A e Tt e A e e T S T

ST T T TR TR STt i T e -
Tl ;AT TR T T T Y T Y T Y S Y T T e T T~ — o~ v v -
- . S, e T TOT AT T T T TR TSI TR TE TR vA v ey

B~ RSN et

l START) o

‘.

.j: STEP
N 9 I DETERMINE TESTING S »
h L CONFIDENCE St
" 2 LEVEL (TCL) - ’
X STEP 3]
& @ setecT TesT AL MGURE 2:3 ... OR SELECT TEST
§ PHASE ON LEFT OBJECTIVES IN MIDDLE S
TESTPHASES JESTING TECHNIQUES o]
IR
TEST OBJECTIVES Y I
RE 2-11
FIGU STEP DETERMINE APPROPRIATE
TESTING TECHNQUES IN
RIGHT-HAND SIDE OF TABLE
SELECT TECHNIQUES
RATED < TCL
PATH
TESTING 11 | 2] 3]~orTes
X STEP
@ CHECK
. X TECHNIQUES
- ON WORKSHEET
o X
p
s FIGURE 2-12
:'-:.:: Figure 2-9. Path 2-Selection of Software Testing Techniques by
Yo Test Phase or Test Objective
»
2-17

This section contains the objectives of the test phases used in this guidebook as
follows—

Test Phase Objectives

Algorithm Confirmation Verify that the proposed algorithm will satisfy all
the stated and derived requirements of the software
being designed. This phase may involve the selec- ey
tion of a "best" algorithm from a group of candidate °

approaches.

Design Verification Verify that the design is a correct implementation
of the specified requirements, and to review the
quality and efficiency of the design.

Unit Test Find discrepancies between the unit's logic and
interfaces, and its design specifications (the
descriptions of module's function, inputs, outputs, o

and external effects.) At this phase, compilation of
the unit occurs. A unit is the smallest compilable
entity of the computer program. ®

Module Test Find discrepancies between the module's logic and
interfaces, and the module design specifications (the
descriptions of module's function, inputs, outputs,
and external effects.) At this phase, compilation of
the module occurs. In this context, a module is °
considered a combination of individual units that is h
smaller than the CPCI.

Integration Test Combine and test several units and modules in order
to check that the interfaces are defined correctly,
and that the combined modules work correctly
together. This process is done incrementally.
Sometimes it proceeds top-down, with stubs used for
the missing modules; sometimes integration is done
bottom-up, starting with combinations of most basic
modules. At present, the former is theoretically
preferred, but the latter is still often performed.

Verification/CPCI Test Verify that the computer program configuration
item (CPCI) is a correct implementation of the
specified design.

Figure 2-10 Test Phases and their Objectives (Beginning)

R A

. R RS .."‘. St et
AL W D TRy W W e T TP IS WP, S

L D P R td - et o T

J OO

1

PQT/FQT Perform a controlled execution of a deliverable
program package such that all specified real-time
and functional requirements are known to be satis-
fied. These tests are normally done according to
government-approved test plans, such that comple-
tion of the FQT results in preliminary acceptance of
the software by the government.

System Test Find discrepancies between the system and its
specifications, or to prove that the entire system
meets it system level specifications. In this test,
the software is integrated with the associated hard-

1 ware. E
' Mission Test Verify that the entire system correctly fulfills the ;",_ B
- mission for which it was intended. This test phase is) AN
l: designed to demonstrate that the system as speci- N '.)
| fied meets the requirements of the mission. SRR
b

Figure 2-10 Test Phases and their Objectives (Concluded)

g "*'VF ——
‘ . ' . o
— 1
i
A4

o N,
))
Fav WA PN X

l.v

.
L
L a’s s 4

LIRSR i

—

L

’

3A11321q0 133} ayy 0y 2|qedydde You ! anbiuyal Bunisal ayl saresipur Anua yueig 3 LON

-

SIN3WIHINO3Y vYIva WY¥DOUd 3LvalTvA

-

ALNGILYANOD IDVIYIINI WILSAS IIVNIVAT

$ILNIAVAVYI NOILWVHIMO WILSAS ILVAIVA

7
7

///.7 5% /

ViVQrS311°iGVdYI IINVINEOIEId NOISSIW I1VNTVAT

ol o ©

Nl N~ o~

Olo| oo ~

77

SILUBYIVYI IINVWEO N34 IWVANLIOS I1VNTVAS

olol ol o

X,

SNOHVYNOISWHLINODIV J1VAIVA

7

-

o

ALITIBLVAWOD IDVINIINI FWYMOUVH 3LIVAITvA

-

NI~

ALNIBILVAWOD IIVINILINI IWVAALIOS 31VAITVA

SINIW3ININD3Y NOISIA 31vaIvA

of ©of of ©

o] ©

Q] o] ©

ol &l o

SINIWIYINOIY IINVINUOIYId GNY TYNCILINNT 31vaITvA

Ol o] O]l ~

ol ol ol ~

$3IDNIDIIIA/SHONYI SIWDIY IVNOIHLONNS 103130

~

el ol oj ol o

-

-

$31IN313133Q/5800Y3 SLND3IY IINYWNOIYId 103130

-

-

$31INIDI13ASBOYYT NOISIDIWd ® AIVENISY JOUd 103130

LaaZ G N B B BN I T Y A

$3IDN31D133Q vivQ 101130

o) ~

(NOILVIINNWWNOD "433SNVE1) SuOue3 OA viva 153130

~ N~

-

Nl O] N~

Nl NI~ O

N N~

-

(LvW¥O31 "INJINGDY S¥Ouy3 Viva 17313Q

-

-

$31DN31D143Q N9IS3A 113130

Nl ml vl vl] |] m] m] -

.

7
7

ol o

ol ol ol ol o] o] @

SYO¥Y3 NDI1SIQ LDN13a

ml m| m -

Ml ml ™

ol ol o

N N m] vl

ml Nl N~

o] o

o o

%
07

SYONWY¥I INJINOD INd1N0 133130

~ND o~

5
.

~NT N N~

7;

SYOUHI LVYWYO4 LNdINO 133430

~

~

o

~

-

-

o

SHO¥YI JID0Y WY¥O0Ud 113130

™~

~

~

[}

%

~

%

~Ni{ o~

o

o] of @

©] ©) ©of ot o] o] o] of o o] o] o] o] ©

SYOHY¥I ONIGOD 103130

X oI px | Ix Ix | Ix [x |x | x |»x [{x |x|x

SISATYNY TYWYO04
ONLLISIL DMOSWAS

Bunsay auwij-jeay

Sunsay voneiny

Bunsay |puonIUNg

Bunsa; wopuey

sp'w 6nqag Q@

Bunday) uoiuassy)

WWdLIINSRIY PduPWIOAd §

sshieuy jeundNgIRg Y

Bunsay paseg-uoneludwniisy) %

bunsay paping moi4-eieq

ssdjeuy uoniued)

Bunsay wiewoqg g

sshieuy yied v

Buwonnued areds induy |7, 47 2

sshleuy Atend weiBoig

YOlRlLdwnIOQ IS iR uy d.nNAS

uoNIQ Aewouy/i0.i3

M1y 2P0

SINDINHIIL ONILSIL

SISATYNY JINVNAC

SISATYNY DU VIS

IR R

SIAULDIMGO 151L

Bunsd Youesq uo paseq
buries ssAjeuy [eanpnnsaed

T2 $ paesde eyl
sanbiuya) Bunsay 1PIRS €2
3)qe) Hbuisn paindwod (1)) |aray
DUIPUO) 133) Y O) PAIe)dI
1€ 3)q0) S1y) Ui LIQUINU Y]
SAON

NOTSSIVY
lsglw;igéugsif‘odxxxKXXXXXKXKXKXXXXKXKK

1351 TThOON

AS3L LINOUNOL WD INIA NDISIQ [X [[[[[x [fx [x{x|x

1831 1DHINOILYISEIA |2 [> I | I o [[Tac Io¢ |2 [oc Jae [¢ [|}
1634 NOILYHDIUNI

NOLLYWVIINOD WHINODTY

$SISYHe IS

w
EH
3
g
<
£
]
[
o
<
=
o
[
B
H
>
=
-
g
8
o]
i
-
°
€
o
L
w
£
a
b o
<
[
-
A od
~
v
3
o
&

2-20

LI S

i PO,

b

LS, W

[y

A o

-

P

-
LN IS

PO AL e

P

R A YT -—

SOFTWARE TO BE TESTED Wﬂf T ‘ |
wa_Z.0 SOFTWARE CATEGurY _1EST OBJ : DETELT LOG/ICEROIR

S‘%’E’é&'ﬁ.’é‘u’s‘s‘ ' PATH1 | PATH2 | PATH 3 cohllv?hfgﬁ'rs
Code Reviews ' .
i Error/Anomaly Detection yd N
f Structure Analysis/Documentation v ' .
: Program Quality Analysis ! i i o
g Input Space Partitioning %////%1///////%////%///////////%
v [A. Path Analysis Vv . .
Z B. Domain Testing 4 ¢
C. Partition Analysis Y7
Data-Flow Guided Testing .
Instrumentation Based Testing V///%///%?%//%%/////////% _ . :
z A. Path/Structural Analysis v R
,c\' B. Performance Measurement 4 i
¢ |c. Assertion Checking] N ;:‘:‘_: -
A D. Debug Aids)
P " |Random Testing .,
: E Functional Testing g .
L ; Mutation Testing | | [{ | PR
o Real-Time Testing v . .
e SYMBOLIC TESTING L
FORMAL ANALYSIS
]

Figure 2-12. Selection Worksheet for Path 2

2-21 e

2.4 PATH 3-SOFTWARE ERROR CATEGORY

This path should be used if you know the categories of software errors that are occurring

o
®

in the software to be tested, or that have occurred in similar projects and are likely to
occur in this one. The categories of software errors used in this table are based on the
categorization used in the Software Reliability Study (ref. THA76). Figure 2-13 shows the
steps in path 3. Note that this path does not use the TCL at all.

. T R,
l. _.’.‘
°

2.4.1 Step 1 B o

Locate the software error categories in table 2-14 that are either occurring or are -~
predicted to occur. Note the software testing techniques that are rated as effective
against these errors. Also note their relative effectiveness. The ratings are H (high), M

(moderate), L (low) and are a measure of the effectiveness of a technique at detecting

software errors in specific categories. Add these techniques to the candidate list. In
most cases, choose only the most highly rated techniques in that row. If there are
techniques rated H, use only those techniques; if the highest ratings are M, use those.
However, if the highest rating is L, it is doubtful that the technique will have a significant
effect against this error type. The effectiveness ratings are used to aid in the selection
process. If an error category has an H in its row, then that technique is very effective at
detecting that type of error. The H, M, L ratings are based only on this criterion. Other
factors such as cost and ease of use are not included and must be considered separately
(sec. 2.5). Program Quality Analysis may appear to be a very poor technique based on its
very low rating against most error categories. This is because it is not an error detection
technique, per se, but a software quality measure which serves a different, and valid,

purpose.

) e e
@ o0
e 5 .

v

2.4.2 Step 2

Record the candidate techniques by indicating their ratings on the Selection Worksheet in

the third column for path 3 as shown in figure 2-15. If possible, exercise path | and path 2

! vonap gt
" a8 o » s

s 0 . e v
. . » l.l.‘

as described in sections 2.2 and 2.3 to add to or verify the list of candidate testing

techniques.

Refer to section 2.8 for a completed example problem that shows how to use path 3 in

selecting software testing techniques. Blank worksheets are provided in section 2.9.

2-22

- - - -

= . .

-t [Yy

. w .. '-. .. -t Y f . L a - ..t ‘V- t. .

. N T e e e e T e e e e e TN T T
RS AP AL DAL SR IL G 3 1 S T A W DA A WA AT TR IREI o, P TRare R PR I PPN Y

LOCATE SOFTWARE
ERROR CATEGORY IN
TABLE

FIGURE 2-14 NOTE EFFECTIVE TESTING

TECHNIQUES AND THEIR
RATING

PATH

STEP

TESTING
TECH. 1 21 3| NOTES

M CHECK
TECHNIQUES
ON WORKSHEET

FIGURE 2-15

Figure 2-13. Path 3-Selection of Software Testing Techniques by
Software Error Category

2-23

nd ——————

- et

- - A s oA
. .
P

- s e

A.q LAl Ae an ol a-a 14 4, J.-.-‘.‘.i... \..-..1
] A o . .

Aiobaied 1013 ay) 01 ajqedidde Jou s1 anbiuydal buiisal ayi saredipur Anua yue|g -31ON
| N
I S n 3 n N T W 5190131vJidna__ 00Z-8
-
'NE 'REIE 154007 $5310NT
. I At S B v ONIGNTINI) SIVIL 4O # LDIYYOINI GILVHILIOOY 0098
3 T 1 w W H T[WlT [H 4001 NI SINIWILVIS MIJANVINOOL 005-8
4 H{1] 1 11w W 1 w W] H S1S1L NOILIGNOD ¥O DI90TONISSIN 00-8 1
] 3
- 11] 1 11 1 w H W wiw Q3INDIHD ONIIA NBVINVA ONOYM 00£-8 5
[
- RN IRIE 1 SRR 1w 3DNIND3S 40 LNO SALIAILIVIIDOT 00Z-8 <
- 1]
w.. SRR RIRIRRE W 3 Wl w NOISS3¥dX3 T¥II901 NI ONVHIJO 1DIYYOINI 00L-8 .m.
. N\ SYOYY3 21901 000-8 IS
R w
. 1 B / 11 YOYYI NOILVONNYL HO ONIONNOY 006V K
!
T wliwl 1 H W / H W NOILVLNANOD ONISSIN 008"V ®
. .]
b, 1 11 1 Wi w 3AOW Q3IXIW OL 3NA SSOTNOISIDIVd 004V 5 3
. - t
- H[win] 1|1 H Q3SN NOILYNDI 3LVENIDVNI/LIIYHOINI 009-V S ~
Y wl wil W / MO14 ¥IANN/AEIAO NV $3DNAOYd NOILVINIWOD 005~V m
” 1] wl 1 1 1 H|H SHOUY3 NOISYIANOD VIVQ ¥O SLINA 00b-V W
w1 wli[1[mu B W H YOWYI NOLINIANOI NOIS 00E-V B _,
, Tw| w11 Wlw | w SISIHLNIYVA 40 35N 1DIWYOINI 007V s ._
- B
¥ wli1 | Wl W W R NOILYND3 NI ANVY¥3dO LDIWHODNI 001V Y
SHOY¥YI TVNOLLYLNANOD 000-v ..m
g slelzlz(zia|o|n|=l>»]|s|o|(nl=|2]|5 (2|2 |z |o]l2
g SEIEER|ElelalzlelElelolc BI85 1215 |5 o1 -1 wnipaus - W 464K
Blal= 12 10 |6 wi® s 3 [™ o SR EEES =)
1 F m 31g (8|3 |¢e 8112 3 3 2 R E m., 1 m > m- z - sbunes uond>ap 10113 :3ION
. 2alalz151E1518 131812 al8 5 (31512232 (R
' g lalgle |z |a(cle|2|3 | la |58 2|22 |0
> Q{2212 5lelalzlalo|Sipldlsislz|2 <[]
. <2133 (5@ [{1z (E 12183 |2 (8 (2] (5 lo 2
. v |Z |o a 4 zle|®|e|s |2 = 1» e |2 o
X wIioe [e > Qo] |© e i3 |o|m c
. 3le]2 |21~ 21210 |2 o
s o M & Q |z .W < m 5
! FE L P ~ (315
g 3|52]
r o 3 -
g 2 =} 9
s o
, 3
N SISATVNV JINVNAQ SISATYNV DILVLS
| & P L 5‘ Te e e ___

MRS AN A g
. o ny
: N] ’ . ..A. ®
b X . O
f, [) . »
Kiobaye) 10112 ayy 03 aigedndde you s1 dnbiuyday Bunsal ayy sarednpui A1uad yue|g 310N
!
! AEER R 1 1 1 TN YOUY3I ONILdIYDSENS 006-Q
. 1) 1)1 1 W 1 ¥OUY¥3 1HOS 008-Q
1 1 1 1 1 1 WINW HOHY3 ONDIDVANN/ONIIDVC Viva 00£-Q
1 1 1 w 1 H|W 3dAL 31VIIVA LOIYUOONI 009-0
F b 1 1 1 1 1 (4] ATLI3IYYOINI INOG NOILVYINdINVIA 118 00s-Q
H]1 3 1 1 W 1 3] HIW IWVN ONOYM JHL A8 01 Q3¥4343Y IT8VIIVA 00v-a
IIN])) W 1 W W | W[AT43d0ud 135 LON X3GNI YO DV14 V Sv Q35N 318VINVA 00£-Q
L IBRIRER 1 1 1 W TN AT¥3d0OUdINI INOQ NOILVZITVILINI VIVQ 00zZ-a -
HIW{ 1 1 MW 3 H HIW 3INOQ LON NOILVZITVILNt ViVvQ 001-a m
1w 1 I 1 4] H|W ONIQVY3Y 340338 QNNOM3Y LON 3714 vivd 0s0-a fm.
c
SBOWY3 DNIANVH viva 000-0 rO\
TR 1 T ONISSIW 311340 ANI 009D =
s
W LB 3 1 1 3 AT3YNLVNIYd GIY3ILNNODN] 3714 40 ON3 00S-2 N
1 B 1 1 1w QIDNIYIIIY ININILVLS LYINEOS LOINYODNI 00v-D v
e}
1 1 1 T W 1VWYO3 LNdNI 1D3W¥0INI 00€-2 pw
W Wil T W 3714 v1va L1DIYHOINI WOU4 QV3Y LNdNI 00Z-2
W Wil 1 W 1 T W 314 VivQ LD34Y0I WOU4 Av3IY LNdNI GiITVYANI 001-2
SYOY¥Y¥3 1NdNI YiVa 000-D
L A LRE] n»mlo|n|e|»|sio|"l®iP> |5 |2I2I7|2]|a
, olx|3 s LR ER 3 FRERERINL MO| -1 wnipaw -y Yy - H
A AHHE AR A R R A R A R R R N RN LR E
2 nnv w. 3 .w.. 1% |3 7 W 3 3|2 FHEARE m Pz |5 ~sbunes uoHIMNIP 10153 [AON y
a1l &6 |23]S I2(2]21212]1» R |o e |= .
g BRI BHEA A EHAHE g
= " a l=s < =12 |«
: 1EIE1EIEIR1FI2IRE BRI E1R IR s 0] |E o
r- elzie |9 |3 2 s |=[®|2(3 2 [» |e |8 o ..A
g | AR NG RER AL c N
2EIZAE) 2 EIE B |° ¥
:[35(z12 1F13 P &
s 352 3 /o
2 E $
v o
, 3 3
’, "
Ve SISATYNV DINVNAQ SISATVNV JULVLS -
. \
b
L A
e Ly
Y T : RN A
Vaoa'a'a’a Loe o re s .P--;- NN f\.

o e ... e °
BRI RIE W / W wilw AT43d0O¥d QILNIWIYINI LON SHILNIOd V1V 00v-D
1 1] N wlw NOILYDO1 LDIWYOINI LV Q3INIYIITY ONIZBVIVA 00D
M {w 1 W W w SANNOB 40 1NO GIININIIIW VIVG 00Z-O
1 1| 1 W H|w Q3NOISNIWIG/A3INII30 A143dO¥d LON VIVa 004-
SYOYYI NOLLINIZIA V1Va 000-9
1 1] 1 1 wlin|w HOYY¥I IDVIYILNI IUVMLIOS/IYVMIIOS 00L-
1 1 w 1 T W YO¥Y¥I IDVIUILNI ¥ISN IWVMLIOS 009-3
1 HEIE 7 W wliwlw ¥OYY3 3IVIYILNI 3SVE VIVA/IVMLIOS 0053
1] 1| W win [w IN3LSIXINON $1 d311vD INILNOYENS 00-4
SI3SIINM IdAL
e 1 ! 1 WIH | W NI LNILSISNOD LON SINIWNOYV INILNOYENS 00€5
NE 11w H RN W W 1Ovid
ONOYM NI 3GVIN ¥O 3AVIN LON INILNO¥ENS OL 11VD 00Z-4
Y H W W Q371D INILNOYENS DNOYM 0014
SHOWY3 IDVIUILNI 000-3
W wlw 111 ONIQV3ISIN ¥0 03188VO 1Nd1NO 0083
W wlw 1 1w W31804d 1333 39Vd ¥0 INNOD INIT 00-3
w wlw 1] TIVINS 001 321501314 L.NdLNO 009-3
wiw wilw 1w 1NdLNO ONISSIW ¥0 I13TdWOINI 005-3
1 NIEE 1w JOYINOD 3OVI¥YYD DNOUM HLIM NILLWM VIVa 00v-3
1 11101 1w LVINYOJ DNOYM NI NILLIWM Viva 00€-3 |
k] 1l Tl w IN3NILVILS
LYNYO4 ONOYM 3HL OL ONIGYOIDV NILLIM VIV 0023
1 T T W 3714 ONOYM NO NILLIM VIVA 00L-3
SYOUMI LNdLNO ViVa 000-3
AABHEBRUREERNRRHHEHEAE
m M L8128 m. gl |3 | g iz le s S % 518 |» nN.. MO| -7 wnpaw - N by - H
21216 2 1S | = n b= ko
21213 S S1312|313(3 w BERERERCRE! m 2 8 o — sBunes uondAApP Jou3 dION
» |A]® slale |2 (312122 (122120l i8 (5 |3 :
zlalz 2B (s 2(E|E(elS (32 |3]e (3 (2|2
2|2 (&5 |a 215 |5 3 Lle | |- Ix
% M 513 (35 3 & 2 m L a > m .Am M 2 s .M. F4
2lzld e |3] slo|d |& |5 = |ple |2 o
e AN EEEIERG R ERERE c
s1e 12 (ala|s 212 |e |a m
e jz |a 2]z FEFRERE
w 3 m a @ w 3
w |2 =1
NE :
H
)
SISATVNV JIWVNAQ SISATYNV DILVIS
e o= ... N0 —

Figure 2-14. (Continued)

2-26

it R 4.-) e
. gy @ i
. AV ' '
Ki10631e) 10113 ayy 01 3jgedndde Jou s) anbiuyr3l Buisal ayy sa1edipul Anua yue|g JLON
H W|lw SQUVAONVI1S
12310¥d H1IM 3181LVdWO0) 1ON JYVMLI0S 006
A¥IAITIAIY ¥O A¥IAMIA 30D 008-(
1 w SINIWININDIY OL JAISNOJSIUNON NOISIQ 004
) 1 : INIWIDNVHNI a315IND3IN YIWINVEDOONINMISN 009+
W Wl wlw winwlw|H A¥VSSIDIN LON/LNIIDIFIINI NOISIA ¥O 300D 005
WIN| W HOYYI NOILVTdWNOD 00v-(
W wil1 w Q30335X3 LIWN AN LNINO 00Ef
. w Wl W 30330X3 LIWIT 3IOVHOLS IHOD 002 o
- W win W Q303VXI LIWNIWIL 00L-f o
¥IH10 000+ E
i 1 1 YOuYI TOULINOD NOILVENDIINOD 0091 ...«w K
_] 1 1 YOUHI/ONIANVISYIANNSIN ¥ISN 005-1 4 S
\ : = RN
ﬁ., 1 1 1 ¥OWY¥3I NOILNDIXI 1S3L 00v-I m) R
. ‘. Y
: NE 7 YOYY¥3 HOLVHIJO O00E- S RAEMNTN
; : ~ \
. 1 1 YOYY3 WVMAYVH 00Z-I 3 ~ H
\ .
1 1 1 (Q3NddNS YOANIA) YOUYI WILSAS ONILVHIJO 00L- .u o~ X
. v N
& SUOUYI NOUV¥IO 0001 3 . “
" 1 1] Hiw 1D3MYODNI WV SLINNVIVA 00E-H w
£ N EIERE w 1 W w INTVA LDIYYOINI OL QIZNVILINIVIVG 00Z-H
1 1l w 1 H|wW 3Sv8 Viva NI QIZNVILINI JONVIVQ 001-H
.
= 1 SYOYY3 3SvE V1va 000-H
alelzlzlz|zlolnl=|p|sleln|=|r|slz]lelz] |a
a Olx<|(n € jw |- : I 213
; M 2|2 m 3Aldlolr el w ¥ olole .W ..m 5 1% m 3 Moy -7 wnipaus - W ubW-H
[@lxl=zl5le sz (2l |3 |8 |2 |n]8|E B |m]|2 .
3 AHHAHA AR EHE R HE ~sbunes uondIIP 1013 1ON
- M RARARRHEER A
> 2 e 2]z |22 |S12 |c J 2 lvjnla |15 |2
. riwnlslz2ga |3l |al2]2l |2l is | ISl]< z
<313 131|5|e TIs e[(12 |815 |3 [< | |o =
2 @® | 2Z |0 a 2 zle|®|als |2 |y |e|® o
@ | & =1 > [—~ | e |o o 35 O |m c
: 518 312 |- 2 |&lg |2 m
: e 7 |8 2 2|5 |S |o
; s lslald C 151315
@ ERERE] 5
Cnd
3 3 F B
y o
. u
L SISATYNY DINVNAQ SISATYNVY JILV1S
-
e
L

p
ol

o A e LBGR M Juu gl angn 2 A a i et Senih B Set ensh et Shan Jani end el Jess dnath gl Sl e P————
na e - P T ——— - . " . - — - ——

SISATVNY TYWYO04
ONLLS3L DNOBNAS
Bunsay dwij-jeay sl x| s
Bunsay uoneinyy
w
z Bunsay jeuoinduny s| si s
-t
g 6unsa) wopuey N
v spiv 6naag @ Y
< Bunpay) uonsassy -
2
S WUIWAINSRI DUBWIOAd '8 IR
sishjeuy [eaNRASYIRY W) S
bunsaj paseg-uoneluawniisy|
Bbuiisaj paping moy4-e1eq T s
siskleuy uoniuey 'y
" bunsa] vrewoq ‘g
@
> sishleuy yied v
«
2
z Buivoniuey aseds 1ndu) g
:—f siskjeuy Linend weiboud o
< -t
- uoneawndoqgssisAjleuy aimonng °
-8
u0132313Q Ajlewouy /1013 s
¥
SM3IAY 3POD) s sl s £
=}
SINDINKDIL ONILSIL ¥
g
Y
a
o
L]
9
[=4
2
@
e
" g
< o
§ ") £
3 21 8 z
) Q g
(4 -
. wl w| v
52 |8l |« £
c £ x| r| 2 <
‘= 3 € Al O 2
*3 |ul 8l :
S E 2] w ~N k-]
S HEIEI1R] £
£3 121289 z
ML EEE 5
s £ 4l 2| w x
- ’ 1 >l o <
- - wv T
w I >
o| o o] e &'
£ gl 2|]|])
z Y)) 2

Figure 2-14. (Concluded) i e

PN

2-28

fa
1}

' soFTware To 8t Testeo _PATH 3B ENXAMNALE e
T N/A SOFTWARE CATEGORY __ &~ /ol A
SOFTWARE TEST NOTES/]
i} TECHNIQUES PATH1 | PATH2 | PATH 3 COMMENTS IR
] ro.
. Code Reviews M]
I Error/Anomaly Detection M : :
| ,T Structure Analysis/Documentation
i Program Quality Analysis
. % % 7/ % ///
2 Input Space Partitioning /////////%/////// ////% IR
» L .] - K
. v |A. Path Analysis .
s S
; B. Domain Testing L
‘ C. Partition Analysis ;_':."j
) Data-Flow Guided Testing /—/ L : .,
| - - Y 7 LA
R Instrumentation Based Testing /////////// ////////////// c q
Y |A. Path/Structural Analysis L o
N IR
: a B. Performance Measurement —
\ é C. Assertion Checking L
+ |- Debug Aids L
i ': Random Testing L
VL! Functional Testing M
. S
! [Mutation Testing
. Real-Time Testing M
SYMBOLIC TESTING
, FORMAL ANALYSIS
' Figure 2-15. Selection Worksheet for Path 3
2 2-29
]

2.5 GUIDELINES FOR FINAL SELECTION OF TESTING TECHNIQUES

If all three paths of testing technique selection are completed, the worksheet will be

similar to the one shown in figure 2-18.

Before arriving at a final selection of techniques from the candidate list, the following
i points should be considered. These guidelines are general and each situation should be
considered unique, in that no general set of guidelines can be effective in all cases. The
judgments and evaluations are qualitative; it is not possible to provide firm guidelines and
precise methods of evaluation. Discussions with experienced software test engineers who
t have used the selected techniques will prove valuable. Refer to section 3.0 to identify

available automated testing tools and their sources.

2.5.1 Technique Suitability

Is the technique applicable to this specific environment? Are there any special
considerations that make this testing especially suitable or completely invalid? What are
the strengths of the technique in this environment and are they appropriate here?

2.5.2 Costs

The goal is to assemble the most effective testing techniques appropriate to the current

software at the least cost.
2.5.3 Special Training

Decide whether the benefit of the technique justifies the extra training expense. Is there

a less expensive alternative that is as effective in the same areas, but that does not

require additional training?
ﬁ' 2.5.4 Special Hardware

Will the additional hardware required by the technique result in enough improvement in

test capability to justify its cost, or is there a less expensive alternative?

2-30

I,
.‘ . - ' —.’

; IS 7—.;‘»—-'-;1
- = .._.....__.4

RN

~

v~

TR

’
]

T g T T T y— — s —— —

2.5.5 Special Software

Real-time software should be tested in a real-time simulator, if possible, before testing in
the real-time environment. The simulator may make it possible to use techniques that
could not be used in the real environment, because the simulator may provide additional
main and mass storage or input/output facilities not available in the onboard or inflight
environment. A simulator may also allow using dynamic techniques that could not be

implemented in the real environment.

2.5.6 Input Requirements

Will the input requirements of the technique make it necessary to have special training or

special hardware?

2.5.7 Output Requirements

Some techniques require a mass storage device for recording data. Other techniques
require additional main memory storage. Assess the impact of the output requirements on
the proposed test environment. Can the environment support the techniques being

considered?

2.5.8 Candidate Testing Techniques

Do the candidate testing techniques complement each other, or do they have mutually
conflicting operational requirements? Does one technique duplicate another without

providing any new information in this environment?

2.6 SELECTION OF SUPPORT TOOLS

Identify and select automated support techniques using table 2.6-1 to complement the
tools and techniques previously selected. The support techniques noted in this table are
described in section 4.0. Also, appropriate support techniques are noted in some testing

techniques descriptions.

Add

o .
Sty
At B Saa,

P

PRy X

T—————

o e e : m
R | . g
sanbiuyraj poddng pue sanbjuyday bunsay -9-g anbiy
X SISATVNY TYWYHO0J
X X ONILSILIINOIWAS
X X X X X X buisa) awi]-|eay s
X X X X X X bunsa) uoneiny m_
X X X X X BUTRRS TeUSI;Iung | n
X X X X X X bunsa)] wopuey v
X X X sply bnqag q u
X X X X buiydayy uoiassy) d
X X X X TUSWSITSESY SSUCWIBIISy @ | <_‘
X X X X X sisA|leuy |einNS/yled v ﬂ_
U R k.
X X X bunsa) paping moyjj-eieq
X X X X SEAPUY UonIIed 5| w
X X X X bunsaj urewog j M
X X X X sishleuy yied ‘v u‘
7 7 o 1> : N
§ 7, \ 2 \ \\\\\\\\\ \\\\\§\ buiuoniueyd areds indy v
X X sishjeuy Aujend) weisboiy 5
X X 0Q/SIsAjeuy aindNag h_
X X uon31aQq Alewouy;i0113 M
X SMIINDY 3P0) S
SSINYVH JYYMULI0S W3I1SAS Y3LIYM YIZATVYNY | HOLVYHYINIO
Y3ANG ViYL 1WOW INJINNDO0AQ 1ns3y viva
1531 NOI131dWOD 1831 1531 1531 1531

2-32

T T T e Ty T v

The availability and sources of software tools that incorporate or support the selected
support techniques can be determined by using the tool catalogs and guidelines of section
3.0.

2.7 TEST COMPLETION CRITERIA

Despite the concerted effort of many investigators in Government, in industry, and in
academia, no absolute answer to the question "When has the software been tested
enough?" has been found. Sections 2.7.1 through 2.7.5 discuss several possible approaches
to determine test completion criteria. However, selection of an appropriate approach

must rest with the reader. The problem is well recognized in the literature:

"One of the most difficult questions to answer when testing a program is determining
when to stop, since there is no way of knowing if the error just detected is the last
remaining error. In fact, in anything but a small program, it is unreasonable to expect
that all errors will eventually be detected."

—Glenford Myers, "The Art of Software Testing."

"Testing can show the presence of errors, never their absence!"

—Edsger Dijkstra.

"Testing ends when the budget ‘. exhausted; the rest is called maintenance."

—Unknown, quoted in many versions.
2.7.1 Approach 1 —Test Until No Errors Remain
Myers has noted a major flaw with this approach: it encourages weak tests. That is, if
the tester's job is done when his test program finds no more errors, he is not motivated to
find errors and subconsciously will write test programs that will show the tested program
to be error free. The tester will not be motivated to design "destructive" test cases that
force the tested program to its design limits.

2.7.2 Approach 2—-Test Until a Method Is Exhausted

An example of this approach might be the requirement to test until all logical paths in the

2-33

T Y T Y T YT YW w—w —rr—y =y

P)]
) . f" ;J
) N
L e]

software have been executed and no errors remain. An alternative requirement might be
to test the software until all boundary-value cases have proved to be error free. This
technique is superior to the first approach, but it also has limits of effectiveness: it is not
helpful in a test phase in which the methodology is not applicable, such as an operational
test. Further, it is a subjective criterion, because there is no way to determine that the
methodology is applied rigorously, nor that it is necessarily the most appropriate

methodology.

2.7.3 Approach 3—Set Error Count Goals

This is a positive approach. If a module is to be tested until four errors are found, the
testers will be highly motivated to design tests that find errors. This approach has several
problems. The first is how to compute the number of errors to be detected. This involves
getting an estimate of the total number of errors in the program and an estimate of the
percentage of errors that feasibly can be detected by testing. The most common way of
determining these numbers is by using historical data from the development of a similar

software product. Another less precise approach is to use industrywide data.
2.7.4 Approach 4 —Error Prediction Models

A more elaborate variation of approach 3 is to use one of several error-prediction models,
or software reliability models. There have been a number of such models proposed in the
technical literature. One of the best summaries is "A Guidebook for Software Reliability
Assessment" (GOE81). A second, useful source is the publication, "Quantitative Software
Models," (QUA79).

Some models require testing the software for a length of time and recording the elapsed
time between detection of successive errors. Other models require recording computer
execution time between detected errors. Still other models involve seeding known but
secret errors in the computer program being tested, and then examining the ratio of
detected seeded errors to the total number of known seeded errors. This approach
presummes that the effectiveness of the tests against rea' and seeded errors is roughly the

same.

2-34

]

No one model is effective in all environments. Indeed, some models are very sensitive to
the assumptions in its derivation; failure of the real world to meet these assumptions will
often result in erratic predictions. The most up-to-date and balanced appraisal of these

techniques for predicting software errors is in (GOES81). e s

2.7.5 Approach 5—Plotting Errors

This approach plots the number of errors found each day, week, or month during the test
phase. As the slope of the curve levels off, it is presumed that the test is approaching
completion. Associated with this plot would be a second plot showing the number of
uncorrected errors. If this number does not begin to decrease after the first plot has

leveled off, the errors are not being corrected. R S

2.7.6 Summary

The best completion criterion is probably a combination of all of the approaches. For the

.

early phases of testing, approach 2 would be most efficient, and approaches 3 and 4 would

be appropriate additions in the later phases. Remember that no one model will work in all
environments. The choice of models should be done with circumspection; (GOES81)

provides details of the considerations involved. v

2.3 EXAMPLE PROBLEM

This section presents an example of how to use this guidebook in selecting software = ns
testing techniques using the three paths and their tables found in sections 2.2 through 2.4. .

It also provides a step-by-step discussion of how the three paths were used.

In the example probler~., the software to be tested is a small computer program used to - .

control the fusing of a weapon. The Air Force mission is armament, the cost constraints

are normal, the schedule is moderately tight, and the software is going to be developed by
the Air Force using relatively informal controls. We want to confirm the algorithm used
in the software at this phase of the test, and because of the seriousness of its function, a
thorough test is required. Finally, external considerations force us to be very concerned
: about any possible cost overrun. Past experience with projects of this kind have

uncovered many software problems resulting from logical activities out of sequence.

2-35

AN LI T R L
S A R CEPRC TR S) LIV
O et e T T et I P . . o eVt

A A A A s Al e e e st a Al A A At s St Al at sm " oala®

BINEL e il A A i S AP S ve 2 i et At e e e S e i i A SR i S o e (h are ara 4 i A S i eeL S iee 4

]

v v v -
.

Using the information in this example problem, we will follow all three paths of the

> v, ¥ v -
TR T g
N 1
®

guidebook to determine the appropriate software testing techniques.

2.8.1 Path 1

The first step is to evaluate the testing confidence level (TCL) appropriate for this

situation, using figure 2-3. Figure 2-17 shows the TCL worksheet resulting from this step.
Each column in the table concerns one consideration, and each consideration is rated and
given a relative weight. Note that although the cost constraint was normal (= 1), this
consideration has been weighted by a factor of 3 to reflect the external consideration of
cost overrun. The development formality consideration was weighted 0 in this example, . _') '4
an unusual action taken only to show that it is a valid option. All other considerations

were weighted normally, with a weight of 1.

The sum of the weights is 9, the weighted sum is 11. The weighted average is 1.22. We

must next consider whether to round the quotient up or to round it down. Since the

consideration with the most weight (cost) was originally sccred as a 1, it is appropriate in
this case to round down. We chose to round toward the rating of the heavily weighted
consideration. Thus, we have TCL = 1. However, this is not a firm rule; common sense
and sound judgement are the final arbiters in selecting the TCL. The second step in path
1 is to choose the appropriate software category. We first look at figure 2-7 and are not
able to decide where our fusing software fits, or we want to confirm our category
selection by another method. Since the software is in the armament mission, we look in
appendix A, find the software type "fusing," and note that its category number = 2. This

corresponds to the "event control" category in figure 2-7.

Now we are ready to use figure 2-8 to select software testing techniques based on the
software category and the TCL. Since the category was "event control," we start at the
second row of the table and proceed across, noting all techniques with a rating of 1 or 0.
That is, we choose all techniques with a rating less than or equal to the computed TCL.
The first six techniques are applicable because they are all rated 0 or 1, so we note these
in the "Path 1" column of the worksheet. The next three techniques are rated 2 or 3 and
are excluded. The entire row is examined, and the results noted in the remainder of the

Path | column of the worksheet. We have now completed path 1.

. PRI A S P

. ® .t Ll - Y .t CHRSC IR - - . " " =
et alAr atlaata’a aatatata e Attt T At Tt

f sorrware Tose resteo_FUSIMNGE (CONTROL

CONSIDERATIONS WEIGHT TCL PRODUCT
(1 = NORMAL) | (0, 1,2,3) (WEIGHT
| FIGURE 2-3 XTCL)

COST

CRITICALITY

SCHEDULE

COMPLEXITY

DEVELOPMENT
FORMALITY

SOFTWARE
CATEGORY

ERROR
DETECTION

QQ&)\Q ~ [~

TEST
COMPREHENSIVENESS

/

!/

SUM OF PRODUCT 2
TCL = =
SUM OF WEIGHT [;

SIS R (QIQ SN (@

\Q\\\D\\\k&)

SumM

A
-
-

g

r
»
}

Figure 2-17. Example TCL Worksheet

2-37

...
..
...
...

...
....................................
...
.................................
................

...........

2.8.2 Path 2

Since we have already computed a TCL, we can go directly to figure 2-11. Our primary
concern for this testing phase was to confirm the algorithms used in the fusing software.
We first look in the left-hand portion of the table and find the phase "algorithm
confirmation" listed. Scanning down this column, we find four X's that mark the rows we
will examine in the right-hand side of the table. Once again, we note only those testing
techniques rated less than or equal to the chosen TCL; that is, 1 or 0. All these
techniques are noted in the second column of the worksheet. We have now cornpleted
path 2.

2.8.3 Path 3

Our example noted an error pattern in previous software of this type; namely, logjcal
activities out of sequence. When we scan down figure 2-14, error category B-200 is found
to closely describe this type of error. Scanning across the row, we find that no technique
is rated highly (H) against this type of error. We decide to consider all techniques rated

medium (M) and note these in the "Path 3" column of the worksheet.
2.3.4 Final Technique Selection

Now the entire worksheet is complete, as shown in figure 2-18. It contains a list of
candidate testing techniques. Based on this worksheet, the next step is to review the
technique descriptions in section 4.0 and to work through the consideration guidelines of
section 2.5 to make a final selection. There are no further tables or guidelines to aid the
user of the guidebook in the final selection of testing techniques for his unique
environment. The user should remember that the guidebook is an aid in selecting software
testing techniques, not an absolute authority. With the guidebook, the user may be

prompted to consider points that might have been overlooked.
2.8.5 Identification of Test Tools

The user must now look up the techniques included in his final choice in one of the tool
catalogs referenced in section 3.0 to determine the availability of automated tools that
implement the chosen techniques. Further judgments are required of the user in section

3.0, and the guidelines of section 2.5 should be considered in this process.

2-38

e B
POV TIPSR o W AP ST S wea

A

dnadhaidts

im = = e e Y ———

SOFTWARE TO BE TESTED oL
oot A SOFTWARE CATEGORY ___X_ v
SotgmagUE?T PATH1 | PATH2 | PATH 3 coh‘non;ars 3
Code Reviews X X M : . e
i Error/Anomaly Detection X j v
1; Structure Analysis/Documentation X ~.4
i Program Quality Analysis ! X I ! , :
N |input Space Partitioning ////////%///%%////%% //////%]
t # A. Path Analysis X X - . 4
: Z B. Doma;Testing X X : {
:_ C. Partition Analysis X o
Lﬁ Data-Flow Guided Testing » - . |y
Instrumentation Based Testing %//////%//27///%%///////////% T j
z A. Path/Structural Analysis X S
'G B. Performance Measurement X Z — '
¢ |C. Assertion Checking X | M
A D. Debug Aids X
: Random Testing K X :
!} Functional Testing X .
S :
; Mutation Testing é j
Real-Time Testing X . K
SYMBOLIC TESTING
FORMAL ANALYSIS

Figure 2-18. Example Selection Worksheet

" G Bod Jusm e Ak ek Jet st Sadh Jed e
PPy b —— — T ———— R T TR N L P ol A -

The guidebook example in this section is simplified to illustrate the use of the guidebook.
Real problems will almost always be more nebulous, but the steps in choosing software

g testing techniques will remain essentially the same.
2.9 Blank Worksheets

|
. Figure 2-19 is a blank TCL worksheet, figure 2-20 is a blank Selection Worksheet. These
worksheets are provided as masters for reproducing working copies. Do not remove them

g from the guidebook so that they may continue to be available as reproduction masters.

SOFTWARE TO BE TESTED

—rT

CONSIDERATIONS

WEIGHT
(1 = NORMAL)

TCL

(0,1,2,3)
FIGURE 2-3

PRODUCT
(WEIGHT
XTCL)

CosT

CRITICALITY

SCHEDULE

COMPLEXITY

DEVELOPMENT
FORMALITY

SOFTWARE
CATEGORY

ERROR
DETECTION

TEST
COMPREHENSIVENESS

SUM

NN

TCL =

SUM OF PRODUCT

SUM OF WEIGHT

Figure 2-19. TCL Worksheet

SOFTWARE TO BE TESTED

TCL SOFTWARE CATEGORY
SOFTWARE TEST NOTES/
TECHNIQUES PATH1 | PATH2 | PATH 3 COMMENTS

Code Reviews

Error/Anomaly Detection

Structure Analysis/Documentation

Program Quality Analysis

Input Space Partitioning %%%W

A. Path Analysis

B. Domain Testing

N—N<<~DZD> A——AP—WN

C. Partition Analysis

Data-Flow Guided Testing

Instrumentation Based Testing //////4////////%//%4/////////////4

A. Path/Structural Analysis

B. Performance Measurement

N—-Tp2<0

C. Assertion Checking

D. Debug Aids

Random Testing

Functional Testing

NN D2D>

Mutation Testing

Real-Time Testing

SYMBOLIC TESTING

FORMAL ANALYSIS

Figure 2-20. Selection Worksheet

T TR i T e gl it b i Ty T

By A

3.0 AVAILABILITY OF SOFTWARE TESTING TOOLS

3.1 CROSS-REFERENCES

This guidebook cross-references three catalogs of available software tools. Each catalog
differs in the facilities offered and in the categories used to classify software tools. Two
of the catalogs are available commercially; the third is maintained by the Government.

TR TR

These catalogs are listed as follows:

. "RCI Software Tools Directory."

. "SRA Software Engineering Automated Tools Index".

. "Software Development Tools." (NBS)

Tables 3.2-1, 3.3-1, and 3.4-1 cross-reference the categories within the guidebook testing

techniques taxonomy to the tool categories used in the too! catalogs. When there is no

identical category in the tool catalog corresponding to the guidebook category, the table

will indicate the catalog categories in which the tool is most likely found. In some cases,

no corresponding category is found and the table entry for the catalog is left blank.

Software tools are available from the commercial suppliers listed in the catalogs, and

from the Government. Within the Government there are two principal sources:

a. Federal Software Exchange Center (FSEC)
NTIS Computer Products
5285 Port Royal Road
Springfield, Virginia 22161
(703) 487-4848 or FTS 737-4848

b. Language Control Facility (ASD/ADOL)
Wright-Patterson AFB, Ohio 45433
(513) 225-4472

BT AL ol S P Lo T R N W v Ty N T et sy,

3.2 RCI SOFTWARE TOOLS DIRECTORY

Published by:

Reifer Consultants, Inc. (RCI)
25550 Hawthorne Blvd.
Torrance, California 90505
(213) 373-8728

Cost (Oct. 83): $225.00

The February 1983 edition of the RCI catalog was reviewed. This catalog is available in a

multivolume looseleaf binder set and is updated semiannually. In June 1983, RCI T . T
announced an online computerized version of the directory with tool category, keyword, B
and tool feature search capabilities. RCI also offers a tool evaluation service to its users; : "_‘.jj - {
in June 1983, an automated version of this service was announced. R
e

The RCI directory allows the reader to locate tools by the following major categories: R 4
. Hardware. e
. Vendor.]
. Life cycle phase. =
. Descriptive keywords.
. Major function.
. Specific capabilities.
. Input to tool. °
. Output from tool. -
. Function of tool.
. Supplier information. »
. Source of information (for directory listing). o . \
For each tool in the directory, there is a brief descriptive paragraph and information on— :
. Machine(s).
. Operating environments.

. Number of users.

. Language.

i. Each tool is categorized as—

o 3.2

. Batch.
. Interactive.
. Real-time.

The status of each tool is categorized as—

. Experimental.
. Production.
. Production (no support).

There is a keyword glossary in the RCI directory with 79 keywords that is helpful in
locating appropriate tools.

The following list contains the table of contents from the RCI directory.
3 DEFINITION TOOLS
3.1 Description Packages
3.2 Simulation Packages
3.3 Requirements Packages

4 DEVELOPMENT TOOLS
4.1 Data Base Packages

4.2 Design Packages

4.3 Language Packages

4.4 Programming Aids

4.5 Test Packages

4.6 Utilities

5 MAINTENANCE TOOLS
5.1 Conversion Packages
3.2 Performance Analysis Packages

6 MANAGEMENT TOOLS

6.1 Configuration Management Packages
6.2 Documentation Packages

6.3 Project Management Packages

R
_
<Y

C

e e i
A ‘, a & &

.

7 TOOL SYSTEMS
7.1 General Purpose Systems

7.2 Application Development Systems

Table 3.2-1 correlates the tool categories in this guidebook to the relevant sections in the
RCI directory. Since these categories are very broad and test tools are not divided into

subcategories, the table also gives the relevant keywords (by number).

A e e T T e e e e -
et et et e ta At . . DI S
PRI E P ISP G S, L P LI LA AP S AT

@ . . 3

r

7.

,..H 92Ud4349Y-s504) A10333.41Q 1004 DY “L-T°E 3|9eL

M”.‘

I 0L Sv SISATVNY TVYWYO03

,,” 0L Sy ONILSIAL DITOINAS

) ¥S '6€ 'DE 'LE '6Z ‘82 ‘92 st Bunsa) awiy-(eay

“”“ Sy Bunsa] uoneinpy

"w VS '6E 'VE'LE'QT'Y Sy bunisay jeuonduny | Q

ﬁ”. vS 'SE Sp Buiisa) wopuey m

W_ vS 0V VT VLY 76’y spiy 6ngaa @ | O

ﬁ‘. v Ty Bunpayd uonsassy O .Wu
79 'vS ‘€S '0S ‘'Op 'Y ZS'sy WAWBINSeIP dUBWIONdd '@ .Hn

vs ‘v Sy siskjeuy jeandNNgyIRd Y

' Sv'vr Bunsa] paseg-uoneiuawnsu|

” 1Z°0C SY 6unsal papino moi4-e1eq

i vS 'SE'E Sy sishjeuy uoniued

¥S ‘SE'E Sy Bunsaj ulewoq g -

vS'E SV sishjleuy yied v m

v 123 SP Buiuoniueyd areds indu) W

7S 2SSt sisAjeuy Ajijend) weaboud .W“

””. 69 '99 'S9 ‘vS ‘TS ‘LY 'OV 'OV ‘€€ "LT 'PT ‘b1 S'p | uoneuawndogssishjeuy aimMdNNS w

P9 °vS LY Ov ‘v 'SL ‘YL 9 vYEY uo1319g Ajewouy/10.13

: SM31A3Y 9p0)

. QUOMAIN AYO93LVD NOUDNNI SINDINHIAL ONUSIL

v 7001 DY LINITVYAIND3I

RTET . INCRUORT W

3-5

PP YL

'

AP U NP

K WL

.

P P W)

Salta’ata

)
LIPS

Efenc o]

LY.

T Ty v Y T

3.3 SRA SOFTWARE ENGINEERING AUTOMATED TOOLS INDEX

Published by:

Software Research Associates (SRA)
P.O. Box 2432

San Francisco, California 94126
(415) 957-1441

Cost (Oct. 83): $225.00

This catalog is available in looseleaf binder form and is available as a computer-accessible
database. An update service is available to keep the index current. The following
description and the cross-reference table 3.3-1 are based on the January 1983 updates to

the index.

The SRA index categorizes the tools by —
. Product name.
Tool category (see following paragraph).

. Supplier.

The tools in the SRA index are classified according to a scheme which associates a special
category number for each major class of tool. Generally, the categories reflect the
position in which a software tool would be used in the software life cycle. The major
categories are listed as follows, showing the subcategories of testing tools. (The other
major categories also have between 2 and 12 subcategories.)

0.0 Software Tool Indexes

1.0 Requirement/Specification Tools

(R L

2.0 Software Design Tools

3.0 Software Implementation Tools
4.0 Software Testing Tools

4.1 Static Analyzer

4.2 Execution Verifier

4.3 Test File Generator

4.4 Test Data Generator

4.5 File Comparator

4.6 Test Pattern Generator

T - r—— — -
P St S adit e e T R Pk e n DA AT D et Srac - U A el A e A e iy A T

4.7 Test Bed System (Test Harness)

4.8 Compiler Validation System

4.9 Electronic data processing (EDP) Auditing Package
4.10 Program Proving System

4.11 Mutation System e
4.12 Symbolic Evaluation System

5.0 Software Maintenance Tools

6.0 Software Project Management Tools

7.0 Languages and Language Processing Systems
8.0 Utility Packages

9.0 Miscellaneous

10.0 Research and Development Systems (Future Systems)
Table 3.3-1 correlates the guidebook taxonomy of software testing techniques to the _
categories in the SRA index. o il

3.4 SOFTWARE DEVELOPMENT TOOLS (NBS)

Published by:

DACS, RADC/ISISI

Griffiss AFB, N.Y. 13441

(315) 336-0937, Autovon 587-3395
Cost: not set as of Oct. 83

[QRPN S

This catalog was originally prepared by Raymond C. Houghton, Jr., National Bureau of
Standards, Special Publication 500-88, issued March 1982. The Data and Analysis Center
for Software (DACS), a DOD Information Analysis Center, will periodically update the
tool catalog. DACS is currently operated by the IIT Research Institute for RADC. DACS
also offers a custom software tool search, which is an automated search of the DACS/NBS
Tools Database, combined with manual searches 2f other tool directories.

This catalog provides many indexes to its tool list. The tools are indexed by —
. General classification:
. Software management, control, and maintenance tools.

. Software modeling and simulation tools.

AdUBIIYIY-$S0JD) X3pU| j00L YHS "L-€°€ 9I9€el

ONIAOYd AVYOO0Ud 0LV SISATVNY TYWHO4
W3ILSAS NOLYNIVAIDNOAWAS TV ONILSIL DNOTWAS
a3gis3L Ly Bunsag awy-jeay
W3LSAS NOUVINW LIy 6unsaj uoneinyy
aigssaL v Bunsa] jeuonduny m
S1001 DNILSIL IVYMLI0S O 6unsay wopuey M
one3a e spiy bnqag q m
NOLLVINIWITdNI IYVYMLIOS 0'E ST00L DNILSIL IWVMLEIOS O 6unpay) uotuassy m
HINNL IDNVINYOINId TE€ YIHIJWNIANOILNIIXI TP 3DOWNL B¢ luawainseapy aduewsoylad ‘g m
IDVHL 8'E QIWALONYLS '€ sishjeuy feinNagAed Y
S1001 ONILS31 IHVMLIOS 0 NOILVINIWIGNI SHYMLIOS O'E fiunsa) paseg-uoneuawnnsyl
S1001 ONILSIL IHVYMLIOS O'Y bunsa) papiny moys-ereqg
vivaisal vv 3IN41S3L €V sishjleuy voniueg D
Vivaisat vy 3U4LS3L €® Bunsa) urewoq ‘g]
HIHMIANOILNDIXI TV sishjeuy yied v m
S10041 ONILSIL IMYMLIOS OF 6uluoniuey areds 1ndu) W
NWIZATVNVOIILVLIS L'V sishjeuy Aijend wesboigd m
IDNIYIIIY-SSOUD Z'S HOLVHINIO LYVHOMOTS 1'S IDVINIINI LS | uonewawndogsiskleuy aimdnns m
AYVNOILDIA ViVA €S YIZATVNVYOIILVLIS 1’y ONIDOONEIA L'E HIDNOINI QLS 9'E uondalaq Ajlewouy/10.13
0t SM3IA3Y 3p0)

S1001 N9IS3IA IUVMLIOS

$3180931VI NOLLINN4 1001 YHS INITVAINDI

SINDINHIIL ONUSIL

3-8

The tool abstracts (or tool lists) contain the following categories (not all information is
available for all tools).

DA AT S0 Ahi SN Aene oy LA L AT S R SO orl SSRM A SuEL SSMM et DS are Avem aae o

. Requirements and design specification and analysis tools.

. Source program analysis and testing tools. IR
. Software support system/programming environment tools. . '-.‘ =
. Program construction and generation tools. SR

Input subject (text, data, specific languages).

Transformation features.

Static analysis features.

Dynamic analysis features.

User output (diagnostics, graphics, listings). SR
Machine output (specific languages). S]
Portability. 3
Source language.

Hardware (specific computer models).
Software (specific operating systems).
Public domain.

Information source.

Acronym of tools.
Title of tool.
Classification (see above).

Features (uses tool feature taxonomy developed for this catalog). T
Stage of development (zoncept, design, implemented).
Date (of development).

Implementation language.

Tool portable (yes, no). F T
Tool size. o
Computer (and other hardware). "
OS (operating system and other software required). Sy

Tool available.
Public domain.
Restrictions (copyrights, licenses).

., PRSI

. s ¢ - »
. P
[N N SRS AR G)

Tool support (if so, and by whom).

A .
AN,

Pt S A ."'. ‘e

. Tool summary (brief, one-paragraph description).

. Documentation available and length.
. References.

. Developer(s).

. Contact.

. Information source (for this listing).

Table 3.4-1 lists the tool function categories in the NBS catalog that correspond to the
testing technique categories used in this guidebook.

g —— e M AL e s e DN e A Sl Sl By

» e
e
P e

PR A

e

-

U194y -ss0s) bojere) SgN |

WL e Mames wing

v'€ 9)qel

11..-~1<J11|1«1111|‘1‘1.
R

SISATVYNY TYWHO4

NOILNJIX3 DINOBWAS

‘SISATVNV DINVNAQ

ONILSIL DITOINAS

NOLLVINWIS SISATYNV JINVYNAQ Bunsay aw)-leay
SSISATVNY DINVNAG bunsaj uoneinpyy
SISATYNY 3DVHIA0D 'NOILVATVAI INIVHISNOD SISATVNV JINVNAQ Bunsay feuonduny
‘SISATVYNVY JINVNAQ 6unsa| wopuey m
DNIDVYEL SISATVYNV JINVNAQ spiv bnqag g W
ONIDJIHI NOILYISSY SISATVNV JIWVNAQ bunpayy vowsassy D | B
NOILVZITILN 3IDUNOSIY 'ONINNL SISATYNY JIWVNAQ WIWaINSeAN duewIopdd 8 m
(v1va '21901) ONIDVYL ‘SISATVNY 3I9VHIAOD SISATVNV JIWVNAQ sishjeuy feinpnasied v a —
SISATYNY JINVNAQ 6unsa)l paseg-uoneiudwnisu M
SISATIVYNY MOT4 VivQ SISATYNVY DILVLS 6unsay paping moiy-ereq
NOILYNIVAI LINIVYLISNOD SISATWNV DILVLS sishjeuy uoniued D "
NOILVNIVAT LNIVYISNOD SISATVNV JILVLS Bunsa) urewog g m .
SISATYNY 39VH3IAOD SISATYNY JILVLS sishjeuy yied v w h
SISATYNW DILVLS Butuoniued areds indu m ‘ ..w
ALIX31dWO0D SISATYNY DILVLS sishjeuy Auend) wesboid m ..m
ONIIIHD SLINN "SSINILINAWOD "ONINNYIS "ONINDIHD JUNLINYLS SISATYNV JILVLS | uoneiuawniogsisjeuy aimpdnag ...g
SISATVNY 3DVJH3ILNI 'ONILIANY 'MOT3 V1VA 'ADNILSISNOD SISATVNV JILYLS u011>313Q Ajewouy/ion3m
SMaIA3Y 3pOD “

$31¥0931VD NOILONNS SEN LNITVAINDI

SINDINHDAL DNILSIL

PRI o
e LRI s
s Py)

e e .
...-.—..

PF. .'-\\n

T ——

3.5 ADDITIONAL SOURCES OF INFORMATION

3.5.1 OTHER CATALOGS

Several other catalogs of available software tools follow.

"cosmiIc"

112 Barrow Hall
University of Georgia
Athens, Georgia 30602
(404) 542-3265

"Federal Software Exchange Catalog"
Federal Software Exchange

Center (FSEC)

NTIS Computer Products

5285 Port Royal Road

Springfield, Virginia 22161

(703) 487-48438 or

FTS 737-4848

"ICP Software Directory"

International Computer Programs, Inc.

9000 Keystone Crossing
Indianapolis, Indiana 46240

e

el A e 3
LIRS AL, " RSP T Tl S

COSMIC (Computer Software Management and
Software Organization) is a catalog of select-
ed computer programs, published on micro-
fiche and magnetic tape yearly by NASA.
COSMIC contains over 1,300 computer pro-

grams in its library.

Published once a year with two semiannual
supplements published between catalog edi-
tions. Relevant sections of the 1983 edition
are "Software Tools" and "Computer Sci-
ences.," The FSEC is a distributor of software
development tools and associated documenta-

tion.

International Computer Programs, Inc. (ICP)
publishes this directory semiannually in
January and July. In the January 1982 issue,
the relevant sections are section 12, par-
ticularly 12.2, "Testing and Emulation," and
section 14, particularly 14.3.3, "Application
Testing." Each tool is described in a para-
graph, and for each tool the following infor-
mation is provided: product name, product
type, geographical area served, hardware
supported, languages, number of users, contact

(source).

" .
.
A M
- e -
- cn

"Datapro Directory of Software"
Datapro Research Corporation
1805 Underwood Blvd.

Delran, New Jersey 08075

"Software"

Data Decisions

20 Brace Road

Cherry Hill, New Jersey 08034

3.5.2 Other References

ed, as necessary, by the bibliography.

"Today's Software Tools Point to
Tomorrow's Tool Systems"
Electronic Design Magazine

"A Review of Software
Maintenance Technology"

U.S. Department of Commerce
National Technical
Information Service

5285 Pcrt Royal Road
Springfield, Virginia 22151

"DoD Tools Directory"

Litton Mellonics Information Center
Litton Guidance & Control Systems
Mail Stop 50

5500 Canago Avenue

Woodland Hills, CA 91365

In addition, the following references are especially recommended. They can be augment-

Each tool is described with a brief paragraph
plus entries for the source company, functions,
hardware systems, operating systems, pricing,

and maintenance. The catalog is updated
incrementally. The "Test and Debugging" sec- -
tion (D80-500-001) reviewed for this guide- o

book is dated February 1983.

This catalog is updated in sections periodic- R
ally; the January 1983 issue of Section 660, ‘
"Programming Support," contained listings of 3
tools relevant to this guidebook. : o . 1

This article was published in "Electronic
Design," dated July 23, 1981, Vol 30, No. 15.

This publication is RADC TR-80-13, NTIS
Accession No. A083-985, dated February 1980.

This is an internal computer listing containing

primarily JOVIAL J73 tools maintained by
Litton. Contact Mr. Howard E. Verne (213)
715-2931 for further information.

4.0 STATE-OF-THE-ART SOFTWARE TEST TECHNIQUES

4.1 INTRODUCTION

This section provides an introduction to state-of-the-art software test techniques.
Section 4.2 contains a summary description of the taxonomy of test techniques. A more
detailed description of the taxonomy is provided in section &.3. It is advised to read
section 4.2 prior to reading section 4.3. Section 4.4 contains descriptions of support
techniques, which are used as aids to the test techniques. Section 4.5 contains brief
descriptions of testing methods that are considered important, but are beyond the scope
of this taxonomy since they treat activities that occur at the front-end of the life cycle.
The final section contains the bibliography.

4.2 SUMMARY DESCRIPTIONS OF THE TAXONOMY

Summary descriptions of the taxonomy of testing techniques used in this handbook are
provided in this section. Table 4.2-1 contains the categories of the taxonomy. Use this
table as a guide to locating technique descriptions.

STATIC ANALYSIS DYNAMIC ANALYSIS
. Code Reviews and Walkthroughs . Instrumentation-Based Testing
. Error and Anomaly Detection . Path and Structural Analysis
. Structure Analysis and Documentation . Performance Measurement
. Program Quality Analysis . Assertion Checking
. Input Space Partitioning . Debug Aids
. Path Analysis . Random Testing
. Domain Testing . Functional Testing
. Partition Analysis . Mutation Testing
Data-Flow Guided Testing . Real-Time Testing

SYMBOLIC TESTING
FORMAL ANALYSIS

Table 4.2-1. Taxonomy of Testing Techniques

The four main categories of the taxonomy are static analysis, dynamic analysis, symbolic

testing, and formal analysis. Static analysis involves detecting errors by examining the Pt e e
software rather than by executing it. In contrast, dynamic analysis methods detect errors - ::-*{-3
by executing the software. Symbolic testing involves executing the program symbolically : ':::::;

-’

[}
]
L
L

by deriving mathematical expressions for the outputs of a program in terms of the inputs. SR

4

'
-y

Overall, formal analysis methods are the least developed and therefore, the least used
category cf the taxonomy. The purpose of formal analysis is to apply the formality and
rigor of mathematics to the task of proving the consistency between an algorithm solution
and a rigorous, complete specification of the intent of the solution. The following four

sections contain summary descriptions of the foir main categories of the taxonomy.

4.2.1 Static Analysis

Static analysis detects errors by examining the software system (i.e., requirements
statement, program code, users manual) rather than by executing it. Some examples of
the errors detected are language syntax errors, misspellings, incorrect punctuation,
improper sequencing of statements, and missing specification elements. Static analysis
techniques may be manually or automatically applied, although automated techniques
require a machine-readable specification of the product. Figure 4.2-1 provides a picture

of the general form of static analysis.

PRODUCT/SPECIFICATION
| ANALYSIS OF REPORTS
STANDARDS, GUIDELINES, CRITERIA] STRUCTURE DIAGNOSTICS

Figure 4.2-1. General Form of Static Analysis

Manual static analysis techniques may be applied to all development products such as the
requirements statement, program code, or a users manual. In general, thege techniques
are straightforward and when applied with discipline are effective in preventing and

detecting errors.

Application of certain manual techniques, such as desk checking, inspection, and walk-
throughs, provide certain advantages over using specialized automated techniques. One
advantage is that different perspectives can be addressed simultaneously. A product may
be examined for high-level and detailed properties. Another advantage is that manual
analysis provides an opportunity for the analyst to apply various heuristic and subjective
judgments. A general weakness of the manual techniques is that correct usage often
involves tedious and repetitious activities. As the size of the application increases, the
tendency is to compromise on the thorough application of the technique, which results in

an increasing chance of error.

.....

. %
i
I}

g

R
e S
'y

”
3 A./L:.';'A ‘A

akd

T T LT Y N T T T T Paliitie i et At Site St et e et (i ~SRet S h "I SRAS S e ubee e T TN W TN T Ty T - —-..1

Automated static analysis tools most often operate on program source code. Two kinds of 1

static analysis can be identified. The first gathers and reports information about a .

program. Generally, this kind of analysis does not search for any particular type of error i! -0
o

in a program. A symbol cross-referencer generator and a consistency check with the
specifications are examples of this type.

The second kind of analysis detects specific classes of errors or anomalies in a program.

Examples of this type are as follows. Error and anomaly detection techniques detect ' * _
errors using the following— (1) parsers determine the adherence of a program to the

language syntax and may include additional local programming conventions and standards

such as percentage of comments per lines of code; (2) techniques for analyzing the -]
consistency of actual and formal parameter interfaces (fig. 4.2-2); (3) techniques for ' ' 1
comparing all variable references with their declarations to check for consistency; (4) :
techniques for analyzing a program for erroneous sequences of events or operations, such RS
as reading from a file before it is opened and using a variable before it is initialized; (5) ; — . e

techniques that determine whether variables in an expression are commensurate (i.e.,

adding gallons and miles).

[J
cat (sus(a s, o
STATIC PROCEDURE

. ANALYSIS |—————pp
o TooL MISMATCH

L]
SUBROUTINE @
L]

PP LU

Figure 4.2-2. Module Interface Consistency Check

Structure analysis techniques detect improper subprogram usage and violation of control
flow standards. This information is usually given in the form of error reports and a
program call graph. In general, various types of status reports are generated as a by-
product of static analysis. The section on documentation (%.3.1.3.2) provides useful

information on various types of reports.

Program quality analysis techniques provide information such as, a measure for overall

program length, the potential smallest volume of an algorithm (or the most succinct form

4-3

vl

s “» e %
4 ~

R, R Y

- - - ~ *

..... - .‘- ..~ - - . . - - - - .
- - - - - - o LY . - . -
V% P WAL A, MR R R RN SIS T N P T G

EaE . o

« e . B YA . e S
ARSI A SRR, S A
U Ry it endh ot nodh oA e g " o " m el ol A

in which an algorithm could be expressed), a measure of the complexity of the program

code, and measures of software qualities such as, reliability, and maintainability.

Input space partitioning techniques are methods of generating test data from the analysis '
of the input space (all possible input values) and the predicates (condition statements, i.e., :
IF-THEN-ELSE, WHILE-DO) of a program. The types of errors the test data are sensitive
. to are errors that occur on or near the boundary of a path, computation errors, wrong path)

and missing path errors.

Data-flow guided testing techniques have wide applicability in compiler design and
optimization activities. Typical data-flow guided testing problems include available)
expressions, live variables, reaching definitions, and very busy variables. See section

4.3.1.6 for a more in-depth discussion of these terms.

4.2.2 Dynamic Analysis)

In contrast to static analysis, which does not involve the execution of the program,

dynamic analysis involves actual execution of the program. The principal applications of

dynamic analysis includes program testing, debugging, and performance measurement (fig. e

4.2-3). This involves the processes of — -
a. Preparing for test execution. o

b. Test execution.

H: c. Analysis of test results.

PPN SRS

o SOLUTION TEST

SPECIFICATIONS ~ | PREPARATION i TEST
SPECIFICATION

2

AND DATA 7| EXECUTION
somuﬂnon NEED tOR
ASSERTIONS ‘ FUNCTION AND TEST MORE TESTING
INSTRUMENTATION ANALYSES ERRORS
OUTPUTS f—

INSTRUMENTED
SPECIFICATION

Figure 4.2-3. General Form of Dynamic Analysis

» b-y

L e L T L L e D e D e . ‘ 11

o

Y A D A J

~.

. \""""'.".i' e '-_'..-‘.-. . . .",'"-‘-'.'.'.'..‘.'Al’.' .« . .
TS A AR A AU L T T w et T T T T T et T e e et T e,
PR IPEIPUICILP RPN A S L Sl S Wl SO, I P YL P W R Pt 1 T PN Py W TG W DM DAL IS PR IPG Y. PR RN T PPN Py S~ s g

s e g g

F.oy N T moTm = - -

r.v.‘ -

8.2.2.1 Test Preparation

Test preparation is accomplished primarily through manual methods. These method: o
include a definition of specification-based functional tests and cause-effect graphing
Specification-based functional testing is a method of developing test scenarios, test data
and expected results through examining the program specifications (in particular, the

requirements, design, and program code). Test scenarios based on the requirements have

7
B
e
L
2
F
]

1Y)

the objective of demonstrating that the functions, performance and interface require- .
ments, and solution constraints are satisfied. Test cases are determined from the
design-to-test functions, structures, algorithms, and other elements of the design. Tes: -
data are determined from the program to exercise computational structures implementec R ’ .
within the program code. . 9.
Preparing for test execution includes test data preparation and formulation of expectec
results. Test data preparation formulates test scenarios, test cases, and the data to be e L ..
input to the program. Test scenarios and test cases are chosen as the result of analyzing ' . :
the requirements and design specifications and the code itself. The test data shoulc R ' _:3
demonstrate and exercise externally visible functions, program structures, data struc- ' o 1
tures, and internal functions. Each test case includes a set of input data and the expected ,_~__,___;
results. The expected results may be expressed in terms of final values and as statements T . —

(assertions) about intermediate states of program execution.

4.2.2.2 Test Execution . ' A

Test execution involves executing a program with prepared test cases and then collecting
the results. Testing may be planned and performed in a top-down or bottom-up fashion,
or a combination of the two. Top-down testing is performed in parallel with top-down
construction in that a module is developed and tested while submodules are left
incomplete as stubs or dummy routines. Bottom-up testing consists of testing pieces of

code, individual modules, and small collections of modules in that order, before they are

P i
PRI

AN e,

integrated into the total program. Bottom-up testing may require the use of test driver

or test harness routines as test support tools.

4-5

e
[T
statete

Ty RUW W WOV WY
. s s

LI A
.

N B T N

- - " B <'V'.‘.A‘. - "
PSP . PR U R R RN

I T PR P URLIPR IO A DR 1P TP DRI RS RIS DAL W DA S S U Py R U A

A T S B e 2R i A A S it A e et et aaaaai sl SRR SRt S e i et o o A S T T e

4.2.2.3 Test Analyses ' R

'] Test coverage analysis captures and reports execution details (e.g., statement or branch e e a
execution counts). This dynamic analysis also includes determining the thoroughness of R
-i'i the testing. The process of analyzing the test results involves comparing the actual to o '

expected results. This analysis requires a specification of the expected results for each -Zf'-'_.‘;ﬂ

. case. Comparison of actual and expected results may be performed manually, or if the -
data are machine readable, then an automated comparator may be used. The detection of
assertion violations is normally accomplished through analyzing the assertion results

generated by the instrumented program.

s
o) .)

. 4.2.2.4 Dynamic Analysis Techniques .

The followving paragraphs contain summary descriptions of the dynamic analysis testing s B

) techniques used in this guidebook. Assertions and cause-effect graphing can be used to - ° 4

\ assist test preparation.) .)

Development of assertions takes place during the design and programming subphases of e

i the life cycle. In general, assertions are statements that specify the intent of a program's L¥~-»-;‘J-:—--<

S e ey

behavicral properties and constraints. Assertions may be generated concerning inputs,
- outputs, and intermediate steps of each function. A special notation (an assertion
- ’ language) often is used to specify the assertions. Assertions are developed and inserted
i into the actual design specification and program code, usually as specially formatted

comments.

Instrumentation-based testing techniques are commonly used to assist in test execution.

Instrumentation, that is, the insertion of code into a program to measure program

.
B characteristics, involves path and structural analysis, performance measurement, asser-
;'-: tion checking, and debug aids.

' Cause-effect graphing is a technique used to develop test cases based on inputs and input

conditions. For each case, the expected outputs are identified. This technique utilizes

the requirements and design specifications of a program to develop test cases.

4-6

- - . - ~Ta . T
L o v T, A D
- . ot «* . DS L™ . P N
-) e e . . -, R LRRIEAP

- P) - - - -‘-.' -.'
AalaNetatataratatlatesar'n

Path and structural analysis techniques provide analytic information concerning the
execution of a segment of a program. The number of times a segment is executed is
reported. Performance measurement techniques examine the execution of a program in
order to provide summary reports on the resource usage of the program. Assertion
checking techniques allow the programmer to specify assertion statements that are
inserted in to the code. If the assertion is found to be false during execution, an error
message is reported. Debug aids are techniques used to control and/or analyze the
dynamics of a program during execution. Various commands can be made during
execution that prove to be helpful debugging aids. A TRACE command will display
control flow information, a DUMP command will display contents of specific storage
cells, and a BREAK command will suspend program execution at a specified point in the

code.

The following four dynamic analysis techniques can be characterized by unique method-
ologies: Random testing is a method of detecting computational and control flow errors
by executing randomly generated inputs and examining the outputs for correctness. This
black-box technique is effective with certain limitations. It is difficult to determine how
long a program should be subjected to random inputs to ensure adequate error detection.
A program that is only subjected to 1 hour of randomly generated inputs may not be as
tested as a program that is subjected to 6 hours of random input. This technique is

feasible if computer resources are available to facilitate adequate testing.

Functional testing is a technique that uses the requirements for software product as the
primary tool for designing the tests. It is by far the most important and widely used
single testing approach.

Mutation testing is a test technique that involves modifying actual statements of the
program. Mutation analysis and error seeding are two examples of this technique.
Mutation analysis is a method of detecting mutation errors (i.e., those involving
alteration, interchanging, or omission of operators, and variables) and also reveals
information concerning the thoroughness with which a program has been tested. This
technique can be an effective method for detecting errors if an experienced person and
automated tools are used in combination. It is necessary for the person to examine the
mutant programs that behave identically to the original program to determine whether

the mutant is equivalent to the original program or whether the collection of test data

4-7

ST

»
b
Lo
.

R S e e

sets is inadequate. Automated tools are essential in expediting the processing of the
many mutant programs. At the end of a successful mutation analysis, many errors will be
uncovered and the collection of test data sets will be very thorough.

Real-time testing is used to simulate the environment surrounding a system when testing
in a live environment is impractical or costly. This technique is mainly used during the
system test phase for usually one or more of the following three reasons.

a. To simulate stress and volume tests (e.g., simtjlating the actions of 100 terminal

users on a timesharing system).

b. To create test conditions that are difficult or impossible to create (e.g., for certain

hardware failures).

c. When testing in the actual environment is impossible (e.g., testing nuclear-reactor
control programs, aerospace systems).This type of testing is effective in detecting

errors that other test methods would fail to uncover.
4.2.3 Symbolic Testing

Symbolic execution is method of interpreting programs by deriving mathematical expres-
sions for the values of variables rather than actually computing their numerical values.
The expressions produced show a perspective of the progress of computations which is
very different from other means of testing such as tracing intermediate values. The
additional information obtained from symbolic execution has been shown to improve

detection of several kinds of program errors (HOW77).
4.2.4 Formal Analysis

Formal analysis is a more rigorous approach to software testing which involves proving
properties of computation performed by programs. This technique provides probably the
highest degree of assurance of program correctness but is also the most difficult to apply.
Two prerequisites for formal analysis of a program are precise specifications of the inputs
and required outputs for the computation, and formal specifications of the semantics of
the programming language used. Program correctness is proven by showing that, given
the specified input conditions and the rules of the programming language, execution of the
program will terminate and produce the desired output conditions.

SRR
A type of formal analysis is proof of program correctness. There are two basic Lo
approaches used with this technique. One approach is to prove the correctness of a whole
program. The second approach is to prove the correctness of particular program . -

properties.

The basic strategy to both approaches is to construct a set of reasoning to show that a

solution specification satisfies its requirement(s). Typically, this is done by comparing the L

inferred transformations to the functional transformations dictated by the specifications
of intent (fig. 4.2-4).

SPECIFICATION OF FUNCTIONAL INTENT - 1

1 .

ALGORITHM COMPARISON EVALUATION & S
AND — DIAGNOSTICS

SPECIFICATION FUNCTIONAL FUNCTIONS I ANALYSIS]

PATH/VARIABLE ANALYSIS COMPUTED S

SELECTION e

Figure 4.2-4. General Form of a Formal Functional Analysis

To do the comparison, control paths are selected through the algorithmic specification.
For each path the values of each data object encountered are computed. Each value is
not computed as a number but rather as a function, or formula. Input are not assigned
specific values but rather are treated as free or unbound variables. As a result, at the end
of tracing down the selected path, the functional relationships of outputs to inputs is
determined. These functions or formulas are then compared to specifications of

functional intent to see if the solution specification is correct as a value transformer.

Proof of correctness is limited by its strict dependence on the validity of the assumptions
on which the analysis is based. Proof of correctness has not yet reached its full potential
as a testing technique for several reasons. For one, program specifications are rarely
written with sufficient precision to permit a rigorous comparison of intent with the
implemented program. Also, accomplishing the analysis manually is extremely tedious

and difficult (thus, prone to error).

4-9

,.
A R
DY SRR

S P IR T S Y LR
DRI TR W W
el it o "B 8 " Vs a

AR e PR T S R S At oL G, T e,
- RO IR I K AT IR U, RN NI AN W)

et T e - Y .
— b WA\ I S WY

F B Pl I AR AN - d B B Pl 0 TR Tl e e et et i '—_>.—.-—‘-V‘.— LS S T A - .- IR I

LY RO
-

4.3 DETAILED TECHNIQUE r=SCRIPTIONS AND CHARACTERISTICS

Each technique description is presented in a standard format as described in the following . e i

sections.

a. Information Input. Contains the input information required to use this technique.

Information Qutput. Contains a description of the results of the technique.

g C. Outline of Method. Contains a basic outline of the methodology. In some cases, it

is beyond the scope of this handbook to outline the methodology fully; a reference is - k

provided in such cases. SRR,

d. Example. Provides an example of the technique if it is possible. Again, an example : ;
of some techniques would be lengthy and thus beyond the scope of this handbook. - e
References are provided. The use of specific tools in the text are for examples S !

only; those tools are not being promoted for use.

e. Effectiveness. Provides profile information, such as follows:
l. The types of errors detected.
2. The degree to which the technique detects those errors based on the usage of the

technique.

f. Applicability. Provides information dealing with the following usages.

1. During which software development test phase(s) as defined in figure 5.1-1.

2. To which specific types of software applications
(@) Scientific.
(b} Complex control flow.

(c) Large versus small applications.

g. Maturity. This section provides information on the current status of a technique =
with respect to usage.
1. Still in developmental and experimental stage.

2. Has been tested and widely used.

o e
-

h. User Training. This section contains an estimate of the learning time and training
needed to successfully implement the technique.

i Costs. This section identifies the necessary resources required to use the technique,

(e.g., human effort, computer time, or any type of overhead).
i je References. References are provided at the end of each technique description. The

complete reference can be found in the bibliography (sec. 4.6).

4.3.1 Static Analysis Techniques

R
4.3.1.1 Code Reviews and Walkthroughs L o . 4

This section contains descriptions of peer reviews, formal reviews, and associated
walkthroughs. These test techniques involve the reading or visual inspection of a program - *4,._....4
by a team of people. The objective of the team is to find errors, but not to find solutions
to the errors.]

4.3.1.1.1 Peer Review

A peer review is a process by which project personnel perform a detailed study and
evaluation of code, documentation, or specification. The team peer review refers to
product evaluations conducted by individuals of equal rank, responsibility, or of similar
experience and skill. There are a number of review techniques that fall into the overall
category of a peer review. Code reading, round-robin reviews, walkthroughs, and
inspections are examples of peer reviews that differ in formality, participant roles and

responsibilities, output produced, and input required.

a. Information Input. The input to a particular peer review will vary slightly depending

on which form of peer review is being conducted. In general, each of the forms of peer
review require that some sort of review package is assembled and distributed. This

package commonly contains a summary of the requirement(s) that are the basis for the

AP

, -
a4 A& & *

product being reviewed. Other common inputs are differentiated by the stage of the
software life cycle currently in process. For example, input to a peer review during the

coding phase would consist of program listings, design specifications, programming

T T N N N N S Ty e I N T NPT ey A

standards and a summary of results from the design peer review previously held on the

same product. Common input to particular forms of peer review are described as follows:

. Code-reading review—
. Component requirements.
. Design specifications.
. Program listings.
. Programming standards.
- Round-robin review— -
. Component requirements. - 1
. Design or code specifications. Ll
. Program listings (if during coding phase). |- ~;"—E?’*~
9 . 4
: . Walkthrough— g . J
3 . Component requirements. C ;
. Design or code specifications. ~-
. Program listings (if coding phase walkthrough).
. Product standards.
. Backup documentation (i.e., flowcharts, HIPO charts, data dictionaries).
. Question list (derived by participants prior to review).
. Inspection—
. Component requirements.
. Design or code specifications.
. Program listings (if during coding phase).
. Product standards.
. Backup documentation.
. Checklist (containing descriptions of particular features to be evalu- _ "
ated). R

's

5
PRSI A

b. Information Output. The output from a peer review varies by form of review. One

output common to each form of a peer review is a decision or concensus about the product

under review. This is usually in the form of a group approval of the product as is, an
approval with recommended modifications, or a rejection (and rescheduled review date.)

Specific outputs by form of peer review are as follows.

. Code-reading and round-robin reviews—
. Informal documentation of detected problems.
T
\.' 1
4-12 -

., -,-“'
LI TR,
Lol al

B I O u O i e U e e e g g e I i oA G S

. Recommendation to accept or reject reviewed product.
. Dependency list (containing the relationship of coding constructs with
variables).
. Walkthrough—
. Action list (formal documentation of problems).
. Walkthrough form (containing review summary and group decision).
: Inspection—
. Inspection schedule and memo (defining individual roles and respon-

sibilities, inspection agenda and schedule).

. Problem definition sheet.

. Summary report (documenting error correction status and related statis-
tics on the errors).

. Management report (describing errors, problems, component status to

management).

c. OQutline of Method. The peer review methodology and participant responsibilities vary

by form of review. Summaries of these methodologies are provided in the latter part of
this section. However, there are a few features common to each methodology, which are

described in the following paragraphs.

Most peer reviews are not attended by management. (An exception is made in
circumstances where the project manager is also a designer, coder, or tester, usually on
very small projects.) The presence of management tends to inhibit participants, since
they feel that they are personally being evaluated. This would be contrary to the intent
of peer reviews, that of studying the product itself.

The assembly and distribution of project review materials prior to the conduct of the peer
review is another common feature. This allows participants to spend some amount of

time reviewing the data to become better prepared for the review.

At the end of most peer reviews, the group arrives at a decision about the status of the

review product. This decision is usually communicated to management.

Most reviews are conducted in a group organization as opposed to individually by
participants or by the project team itself. While this may seem an obvious feature, it

LA A Y
ORI TP I I
R S N A AN

O S N W WP W i L LY

CI S CEArA I A St SR APE Akt s . v — e v ——— — T e oy

bears some discussion. Most organizations doing software development and/or mainten-
ance employ some variation of a team approach. Some team organizations are described
as follows:

. Conventional team. A senior programmer directs the efforts of one or more less

experienced programmers.

T
.

. . Egoless team. Programmers that are of about equal experience share product
. responsibilities. RERNANE
. Chief programmer team. A highly qualified senior programmer leads the efforts of Voo 1
- other team members for which specific roles and responsibilities have been assigned]
[..' (i.e., backup programmer, secretary, librarian). - .'_]
o o . e
& The group participating in the peer review is not necessarily the same as the team L
g organized to mai 1ge and complete the software product. The review group is likely to be T
: composed of a subset of the project team plus other individuals as required by the form of f L]
; review being held and the stage of the life cycle in process. The benefits of peer reviews '.;f.'-_;:...,',,‘
' 4

are unlikely to be attained if the group acts separately, without some designated responsi-
*{‘ bilities. Some roles commonly used in review groups are described below. These roles are -

not all employed in any ¢ ne review.

. Group and review leader. The individual designated by management with planning,
directing, organizing and coordinating responsibilities. Usually has responsibilities
after the review to ensure that recommendations are implemented.

. Designer. The individual responsible for the translation of the product into a plan
for its implementation.

. Implementer. The individual responsible for developing the product according to the

plan detailed by the designer.

. Tester. The individual responsible for testing the product as developed by the
implementer.
. Coordinator. The individual designated with planning, directing, organizing and

coordinating responsibilities.
. Producer. The individual whose product is under review.
. Recorder. The individual responsible for documenting the review activities during
: the review.
‘ . User representative. The individual responsible for ensuring that the user's

requirements are addressed.

R BY S _'.'_ T . o«
et e T T T T e

S
Ko U W T S N N AP

Ty V:.‘WPT"'""—'

:
F
Eﬁi&
y
]

T T TRE Rl IO T Tt Gute, AP i & tho gives Jues e A T

. Standards representative.” The individual responsible for ensuring that product
standards are conformed to.

. Maintenance representative. The individual who will be responsible for updates or
corrections to the installed product.

. Others. Individuals with specialized skills or responsibilities which acquire their
contributions during ~the peer review.

While the forms of peer reviews have some similarities and generally involve designation
of participant roles and responsibilities, they are different in application. The remainder
of this section will summarize the application methods associated with the forms of peer
reviews previously introduced.

Code-Reading Review. Code reading is a line-by-line study and evaluation of program
source code. It is generally performed on source code which has been compiled and is free
of syntax errors. However, some organizations practice code-reading on uncompiled
source listings or hand-written code on coding sheets in order to remove syntax and logic
errors prior to code entry. Code reading is commonly practiced on top-down, structured

code and becomes cost ineffective when performed on unstructured code.

The optimum size of the code-reading review team is 3-4. The producer sets up the
review and is responsible for team leadership. Two or three programmer/analysts are
selected by the producer based upon their experience, responsibilities with interfacing
programs, or other specialized skill.

The producer distributes the review input (see input section) about 2 days in advance.
During the review the producer and the reviewers go through each line of code checking
for features which will make the program more readatle, usable, reliable and maintain-
able. Two types of code-reading may be performed: reading for understanding and
reading for verification. Reading for understanding is performed when the reader desires
an overall appreciation of how the program module works, its structure, what functions it

performs, and whether it follows established standards. Assuming that the following

figure depicts the structure of a program component, a reviewer reading for understand-
ing would review the modules in the the following order: 1.0, 2.0, 2.1, 2.2, 3.0, 3.1, 3.2,
3.3.

-
" =

. . RS
A A T T T T I VA SR N T A
AT SR PSR WAL D TR S PO IR LU A

f
0
L

1.0

2.1 2.2 3.1 32 33

v

it Aad Ry auk it 1
oo

In contrast to this top-to-bottom approach, reading for verification implies a bottom-up

review of the code. The component depicted above would be perused in the following
order: 3.3, 3.2, 3.1, 3.0, 2.2, 2.1, 2.0, 1.0. In this manner it is possible to produce a
dependency list detailing parameters, control switches, table pointers, and internal and
external variables used by the component. The list can then be used to ensure
hierarchical consistency, data availability, variable initiation, etc. Reviewers point out
any problems or errors detected while reading for understanding or verification during the

review.

The team then makes an informal decision about the acceptability of the code product and
may recommend changes. The producer notes suggested modifications and is responsible
for all changes to the source code. Suggested changes are evaluated by the producer and

need not be implemented if the producer determines that they are invalid.

There is no mechanism to ensure that change is implemented or to follow-up on the

review.

Round-Robin Review. A round-robin review is a peer review where each participant is
given an equal and similar share of the product being reviewed to study, present and lead

in its evaluation.

A round-robin review can be given during any phase of the product life cycle and is also
useful for documentation review. In addition, there are variations of the round-robin
review which incorporate some of the best features from other peer review forms but
continue to use the alternating review leader approach. For example, during a round-

robin inspection, each item on the inspection checklist is made the responsibility of

alternating participants.

e " - L S e -
L RN I e . a e e, AR . e
AR IR I SRR AL AR PO TR IR W Y WA, TR A

T Y TN TR T oY I YW D W WU T v W am o~ i = o =

The common number of people involved in this type of peer review is 4-6. The meeting is
scheduled bv the producer, who also distributes some high-level documentation as input.
The producer will either be the first review leader or will assign this responsibility to

another participant. The temporary leader will guide the other participants (who may be
implementors, designers, testers, users, maintenance representatives, etc.) through the
first unit of work. This unit may be a module, paragraph, line of code, inspection item, or
other unit of manageable size. All participants (including the leader) have the opportunity

to comment on the unit before the next leader begins the evaluation of the next unit. The
leaders are responsible for noting major comments raised about their piece of work. At
the end of the review all the major comments are summarized and the group decides
whether or not to approve the product. No formal mechanism for review follow-up is
used.

Walkthroughs. This type of peer review is more formal than the code-reading review or

x round-robin review. Distinct roles and responsibilities are assigned prior to review. Pre-
F' review preparation is greater and a more formal approach to problem documentation is
: stressed. Another key feature of this review is that it is presented by the producer. The
most common walkthroughs are those held during design and code yet recently they are

’ﬁ being applied to specifications documentation and test results.

= The producer schedules the review and assembles and distributes input. In most cases the
producer selects the walkthrough participants (although sometimes this is done by

LI A% A i e o
B BN
e

management) and notifies them of their roles and responsibilities. The walkthrough is
usually conducted with less than seven participants and lasts not more than 2 hours. If
more time is needed a break must be given or the product should be reduced in size.
Roles usually included in a walkthrough are producer, coordinator, recorder, and rep-

resentatives of user, maintenance and stardards organizations.

The review is opened by the coordinator, yet the producer is responsible for leading the
group through the product. In the case of design and code walkthroughs, the producer
simulates the operation of the component, allowing each participant to comment based on
his area of specialization. A list of problems is kept and at the end of the review, each
participant signs the list or other walkthrough form indicating whether the product is
accepted as-is, accepted with recommended changes, or rejected. Suggested changes are
made at the discretion of the producer. There are no formal means of follow-up on the

. - L R N
AR IR I DI . e e Sat

RO I TR ST -
CRIN ” C
e

-..' - ., ., L . - . - « " e 8" - v - -
R P NI SR AP YR TR R IR IRV Wi VRSV

AR N

- > - - -—
CAE = e v - o i < it R A e Calfcationth sl souk ot acenai) L v T -

review comments. However, if the walkthrough review is used for products throughout
the life cycle (i.e., specification, design, code and test walkthrough), comments from past
reviews can be discussed at the start of the next review.

Inspections. Inspections are the mcst formal, commonly-used form of peer review. The
key feature of an inspection is that it is driven by the use of checklists to facilitate error
detection. These checklists are updated as statistics indicate that certain types of errors
are occurring more or less frequently than in the past. The most commonly held types of
inspections are conducted on the product design and code, although inspections may be
used during any life cycle phase. Inspections should be short since they are often quite
intensive. This means that the product component to be r *viewed must be of small size.
Specifications or design which will result in 50-100 lines of code are normally manageable.
This translates into an inspection of 15 minutes to 1 hour, although complex components
may require as much as 2 hours. In any event inspections of more than 2 hours are
generally less effective and should be avoided.

Two or three days prior to the inspection the producer assembles the input to the
inspection and gives it to the coordinator for distribution. Participants are expected to

study and make comments on the materials prior to the review.

The review is lead by a participant other than the producer. Generally, the individual
who will have the greatest involvement in the next phase of the product life cycle is
designated as reader. For example, a requirements inspection would likely be lead by a
designer, a design review by an implementer, and so forth. The exception to this occurs
for a code inspection which is lead by the designer. The inspection is organized and

coordinated by an individual designated as the group leader or coordinater.

The reader goes through the product component, using the checklist as a means to identify
common types of errors as well as standards violations. A primary goal of an inspection is
to identify items which can be modified to make the component more understandable,
maintainable, or usable. Participants (identified earlier in this section) discuss any issues

which they identified in pre-inspection study.

At the end of the inspection an accept/reject decision is made by the group and the

coordinator summarizes all the errors and problems detected and provides this list to all

4-18

- PR

T T W T, T W v Y e e W T YT ey —y

participants. The individual whose work was under review (designer, implementer, tester) B
uses the list to make revisions to the component. When revisions are implemented, the :-_ j:g'-'.
coordinator and producer go through a mini-review using the problem list as a checklist. ‘ '

The coordinator then completes management and summary reports. The summary report
is used to update checklists for subsequent inspections.

d. Example. This section contains an example describing a code-reading review. Three ' - ' »
days prior to estimated completion of coding, the producer of a program component e
begins preparation for a code-reading review. The component is composed of 90 lines of
Fortran code and associated comments. The producer obtains copies of the source listing
and requirements and design specifications for the component and distributes them to ' .
three peers, notifying them of the review date and place. :

Each reviewer reads the code for general understanding; reviewing a major function and

its supporting functions prior to reviewing the next major function. ‘ - e

One reviewer notes an exception to the programming standards. Another thinks that the

data names are not meaningful. The third has found several comments which inaccurately

represent the function they describe. Each rev.ecwer makes a note of these points as well
as any comments about the structure of the component. Next, the requirements are
studied to ensure that each requirement is addressed by the component. It appears that

the requirements have all been met.

The code-reading review is led by the producer. After a brief description of the : '
component and its interfaces, the producer leads the reviewers through the code. Rather .-f.‘_-‘;t':_' '_~_'.':'.
than progressing through the component from top to bottom, the decision is made to : w
perform code-reading from the bottom up. This form of code-reading is used to verify the oy . -

components correctness.

As the code is being perused one of the reviewers is made responsible for keeping a
dependency list. As each variable is defined, referenced, or modified. a notation is made

on the list.

PR SEAKSL S

e
Tt ey

- .
Lard

AD-A147 289 SOFTHRRE TEST HANDBOOK : SOFTHRRE TEST GUIDEBOOK YOLUME 2/3 .
2¢U> BOEING REROSPRCE CO SEATTLE WA ENGINEERING '
TECHNOLOGY DIV E PRESSON MAR 84 RADC-TR-84- 53 YoL-2

UNCLASSIFIED F30682-82-C G 9/2

] L

L e
R *

Ta st

g
s

Y

e,
R YR VPR,

g

e

o G - e = -

Rt

o ey v
R

SR R

ddaa

K EE] -_._n_._u._m

2

M_

=y

L

i Nl '.'.‘\'.'.‘.".'-'-'..'— .A'."..-I.I'I.I'-I.l-. -. 'w. e .I.-. l.'.-—.l'w. Tr A e 2 g T o g

wad
i

The verification code reading uncovers the use of a variable prior to its definition. This

>
r
:

error is documented on an error list by the producer. In addition, each of the problems . i

detected earlier during the code-reading (as performed by each individual) is discussed and ;o .

-4
documented.
At the end of the review, the error list is summarized to the group by the producer. Since ','Z;Z

- AR

no major problems were detected, the participants agree to accept the code with the
agreed-to minor modifications. The producer then uses the error/problem list for

reference when making modifications to the component.

e. Effectiveness. Studies have been conducted to identify the following qualitative [”“*‘.““‘:

benefits by forms of peer reviews. RO

. Higher status visibility.

. Decreased debugging time. v
t . Early detection of design and analysis errors which would be much more costly to { “’;‘"‘"‘4‘
9 correct in later development phases. DRI
. . Identification of design or code inefficiencies. R
- . Ensuring adherence to standards.

. Increased program readability.
o . Increased user satisfaction. K *W
:i:' . Communication of new ideas or technology. " . .::‘.
. Increased maintainability. ""_
& Little data are available which identifies the quantitative benefits attributable to the use BRI
L of a particular form of peer review. However, one source estimates that the number of -
f errors in production programs was reduced by a factor of ten by utilizing walkthroughs. ii
é Computational and logic errors are those types of errors detected by this technique. ;' "..'““-']
Another source estimates that a project employing inspections achieved 23% higher RIS
._ programmer productivity than with walkthroughs. No data was available indicating the :
[- amount of increased programmer productivity attributable to the inspections alone.
? f. Applicability. Peer reviews are applicable to large or small projects during design
verification, unit test, and module test phases and are not limited by project type or
' complexity.

Y
e '.,'.I\"'- |

o

8- Maturity. Peer reviews are widely used and have demonstrated to be quite effective in
detecting errors despite the informality of the methodology. This technique has been
developed for quite sometime.

h. User Training. None of the peer reviews discussed require extensive training to
implement. They do require familiarity with the concept and methodology involved.
Experience has shown that peer reviews are most successful when the individual with
responsibility for directing the review is knowledgable about the process and its intended
results.

i. Costs. The reviews require no special tools or equipment. The main cost involved is
that of human resources. If the reviews are conducted in accordance with the resource
guidelines expressed in most references, the costs of peer reviews should be negligible
compared with the expected returns. Most references suggest that peer reviews should be
no longer than 2 hours, preferably 1/2 to 1 hour. Preparation time can amount to as little
as 1/2 hour and should not require longer than 1/2 day per review.

j. References.

(COD 76) (GLA 78) (MYE 78)
(DAL 77) (SHN 80)

(FAG 76) (SYS 77)

(FRE 77) (You 77)

4.3.1.1.2 Formal Review

Formal reviews constitute a series of reviews of a software system, usually conducted at
major milestones in the software development life cycle. They are used to improve
development visibility and product quality and provide the basic means of communication
between the project team, company management, and user representatives. Formal
reviews are most often implemented for medium- to large-size development projects,
although small projects employ a less rigorous form of the technique.

The most common types of formal reviews are held at the completion of the Require-
ments, Preliminary Design, Detailed (Critical) Design, Coding, and Installation phases.
While names of these reviews may vary by company, some generally recognized names are
Requirements Review, Preliminary Design Review (PDR), Critical Design Review (CDR),
Code Construction Review, and Acceptance Test Review.

...
f
PR IPIA

a. Information Input. The input to a particular formal review will vary slightly depending

on the stage of the life cycle just completed. In general, each formal review will require
that some sort of review package be assembled and then distributed at a review meeting. .
This package commonly contains a summary of the requirements that are the basis for the
product being reviewed. These and other common inputs to formal reviews fall into three

main categories, described as follows.

Project documents. These are documents produced by the development team to describe
the system. The specific documents required are dependent upon the life cycle phase just

completed. For example: a review conducted at the conclusion of the requirements phase

t would necessitate availability of Functional Specifications or System/Subsystem Specifi- 5 o
cations. L

f Backup documentation. This type of input is documentation which is not usually SRR

L contractually required, yet preparation of which is necessary to support systems develop- i . -~

ment or otherwise record project progress. Specific types of backup documentation vary

- by the phase for which the review is performed. Rough drafts of user and maintenance

manuals are examples of backup documentation examined during a design review to plan

for continuation of the project. Program listings are an example of backup documentation

utilized during a code construction review.

Other inputs. All other inputs are primarily used to clarify or expand upon the project

documents and backup documents. They may include viewfoils and slides prepared by

project management for the formal review meeting, the minutes of the previous phase

review meeting, or preliminary evaluations of the project documents under review.

b. Information Output. The information output associated with a formal review generally

falls into the following categories.

Management reports. These are written reports from the project manager to upper

management describing the results of the review, problems revealed, proposed solutions,

and any upper management assistance required.

Outside reviewer reports. These are written reports to the project manager from

participants of the review who have not worked on the project. These reports provide

outside reviewers an opportunity to express their appraisal of the project status and the
likelihood of meeting project objectives. It also allows them to make suggestions for

correcting any deficiencies noted.

Action items. This is a list of all required post-review action items to be completed
before a review can be satisfactorily closed out. With each item is an indication of

whether customer or contractor action is required for resolution.

Review minutes. This is a written record of the review meeting proceedings which are

. recorded by a designee of the leader of the review team. The minutes of the review are
k distributed to each review team member after the completion of the review meeting.
Decision to authorize next phase. A decision must be reached at any formal review to

authorize initiation of the next life cycle phase.

Understanding of project status. At the conclusion of any formal review there should be a
common understanding of project status among the project personnel present at the

review.

c. Qutline of Method. The methodology of formal reviews is outlined as follows.

Participants. The participants in a formal review are often selected from the following

group of people:

. Project manager.
. Project technical lead.
. Other project team members—analysts, designers, programmers.
. Client.
. . User representative(s).
. Line management of project manager.
) . Outside reviewers—quality assurance personnel, experienced people on other pro-
: jects.
. Functional support personnel—finance, technology personnel.
. Subcontractor management, if applicable.

Others—configuration management representative, maintenance representative.

The process. Formal reviews should be scheduled and organized by project management.
Each review must be scheduled at a meaningful point during software development. The
review effectively serves as the phase milestone for any particular phase. There are five

basic steps involved in every formal review.

Preparation. All documentation that serves as source material for the review must be
prepared prior to the review. These materials may be distributed to each review
participant before the review meeting in order to allow reviewers sufficient time to
review and make appraisals of the materials. The location and time of the review

meeting must be established, participants must be identified, and an agenda planned.

Overview presentation. At the review meeting, all applicable product and backup
documentation is distributed and a high-level summary of the product to be reviewed is

presented. Objectives of the review are also given.

Detailed presentation. A detailed description of the project status and progress achieved
during the review period is presented. Problems are identified and openly discussed by the

review team.

Summary. A summary of the results of the review is given. A decision about the status
of the review is made. A list of new action items is constructed and responsibility for

completion of each item is assigned.

Followup. The completion of all action items is verified. All reports are completed and
distributed.

d. Example. Two weeks prior to estimated completion of the requirements document, the
producer of a program receives notification from his client that a requirements review is
desired. The client proceeds in selecting a chairman to conduct the review. As
participants in the review, the chairman selects the project manager, project technical
lead, a member of the requirements definition team, and a member of the requirements
analysis team. The client also has indicated that he would like to include the following
people in the review: a representative from the user shop, a reviewer from an

independent computing organization, and a representative from his own organization.

4-24

T W Y Y N N Y T I Y T Y W T W TV W w o w e — ~— —y -

Pl e RSl A A RS ATt SR RtE Jubi Sl e AL S DAL e Sad et o - S et A e e s Jn et e Re o -——— ———w
- e . an LR DRACT AR RAER TR o B RS . e T

The chairman informs all review participants of the date, time, and location of the
review. Ten days prior to the meeting, the chairman distributes all documents produced :
by the requirements definition and analysis teams (requirements document, preliminary IR
plans, other review material) to each review participant. In preparation of the meeting,
each reviewer critically reviews the documents. The user representative is puzzled over
the inclusion of a requirement concerning the use of a proposed database. The reviewer
from the outside computing «rganization notes that the version of the operating system to
be used in developing the software is very outdated. A representative of the client
organization has a question concerning the use of a subcontractor in one phase of the
project. Each reviewer submits his comments to the chairman before the scheduled
review meeting. The chairman receives the comments and directs each to the appropriate

requirements team member to allow proper time for responses to be prepared.

The requirements review meeting begins with a brief introduction by the chairman. All

participants are introduced, review materials are listed, and the procedure for conducting
the review is presented. A presentation is then given summarizing the problem that led to
the requirements and the procedure that was used to define these requirements. At this
time, the user representative inquires about the requirement concerning the use of a
particular database as stated in the requirements document. The project technical lead

responds to this question. The user representative accepts this response, which is so noted

by the recorder in the official minutes of the meeting.

Lol o S0 2N BN
B M
ot

The meeting continues with an analysis of the requirements and a description of the

el

contractor's planned approach for developing a solution to the problem. At this time, the

questions from the client representative and the outside computing organization are
discussed. The project manager responds to questions concerning the use of a subcontrac-
tor on the project. Certain suggestions have been made which require the approval of the
subcontractor. These suggestions are placed on the action list. The technical lead AR
acknowledges the problems that the independent computing organization has pointed out. :
He notes that certain software vendors must be contacted to resolve the problem. This o
item is also placed on the action list. A general discussion among all review team

members follows.

At the end of the review, the chairman seeks a decision from the reviewers about the

acceptability of the requirements document. They agree to give their approval, providing

DRI RO LI RN I ANCRERNE I
- . P AR A A RO L—_i“

-, L, .
I‘ilv 4 .'I- Snintindns

AR S SN L A
_J-“__.l-!“-'_;! a a4

. that the suggestions noted on the action list are thoroughly investigated. All participants

agree to this decision and the meeting is adjourned.

The chairman distributes a copy of the minutes of the meeting, including action items, to

all participants. The project manager informs the subcontractor of the suggestions made

v . -~
A -
.

at the meeting. The subcontractor subsequently agrees with the suggestions. The project

- -
a
.

technical lead contacts the software vendor from which the current operating system was
purchased and learns that the latest version can be easily installed before it is needed for
this project. He notifies the project manager of this, who subsequently approves its
purchase. The requirements document is appropriately revised to reflect the completion
of these action items. The chairman verifies that all action items have been completed.
The project manager submits a management report to management, summarizing the

review.

e. Effectiveness. Since the cost to correct an error increases rapidly as the development
process progresses, detection of errors by the use of formal reviews is an attractive
prospect. Computational and logic errors are the types of errors detected by this

technique.

Some of the qualitative benefits attributable to the use of formal reviews are given

below:

. Highly visible systems development.

. Early detection of design and analysis errors.

. More reliable estimating and scheduling.

. Increased product reliability, maintainability.

. Increased education and experience of all individuals involved in the process.
. Increased adherence to standards.

. Increased user satisfaction.

Little data are available which identifies the quantitative benefits attributable to the use

of formal reviews.

Experience with this technique indicates that it is most effective on large projects. The
costs involved in performing formal reviews on small projects, however, may be

sufficiently large enough to consider lessening the formality of the reviews or even

eliminating or combining some of them.

e ..

yi:. = ®® 5 ¢ F .7

TV e v v s B

F_'.(‘ - '_-"*‘-:"'-.' P I . v~ T T < . I

.....

LRSS L R S e T T T T T T T e T e R RO T ARt Bt it i o Y

f. Applicability. Formal reviews are applicable to large or small projects, during design
verification and unit test phases and are not limited by project type or complexity.

g- Maturity. This is a widely used technique.

h. User Training. This technique does not require any special training. However, the
success or failure of a formal review is dependent on the people who attend. They must
be intelligent, skilled, knowledgeable in a specific problem area, and be able to interact
effectively with other team members. The experience and expertise of the individual

responsible for directing the review is also critical to the success of the effort.

i. Costs. The method requires no special tools or equipment. The main cost involved is
that of human resources. If formal reviews are conducted in accordance with the
resource guidelines expressed in most references, the costs of reviews are negligible
compared with the expected returns. Most references suggest that formal review
meetings should not require more than 1 to 2 hours. Preparation time can amount to as

little as 1/2 hour and should not require longer than 1/2 day per review.

j- References.

(FRE 77) (SHN 80)
(GLA 79A) (WEI 71)
(MEY 75)

4.3.1.2 Error and Anomaly Detection Techniques

This section contains techniques that detect errors without executing the program
(statically). Testing techniques that deal with syntax checking (uninitialized variables,
unreachable code), coding standards auditing, and data checking (set-use, data flow, units
consistency) are described in this section.

4.3.1.2.1 Code Auditing

Code auditing involves examining the source code and determining whether prescribed
programming standards and practices have been followed.

4-27

B A Y R

. e R &) Ea

T
| SRV R

a. Information Input. The information input to code auditing is the source code to be

analyzed.

b. Information Output. The information output by code auditing is a determination of

whether the code under analysis adheres to prescribed programming standards. If errors
exist, information is generated detailing which standards have been violated and where
the violations occur. This information can appear as error messages included with a
source listing or as a separate report, Other diagnostic information, such as a cross-

reference listing, may also be output as an aid to making error corrections.

c. Outline of Method. Code auditing provides an objective, reliable means of verifying

that a program complies with a specified set of coding standards. Some common

programming conventions that code auditing can check for are as follows.

Correct syntax. Do all program statements conform to the specifications of the language
definition?
Portability. Is the code written so that it can easily operate on different computer

configurations?

Use of structured programming constructs. Does the code make proper use of a specified
set of coding constructs such as IF-THEN-ELSE or DO-WHILE?

Size. Is the length of any program unit not more than a specified number of statements?
Commentary. Is each program unit appropriately documented? For example, is each unit
preceded by a block of comments that indicate the function of the unit and the function

of each variable used?

Naming conventions. Do the names of all variables, routines, and other symbolic entities

follow prescribed naming conventions?

Statement labeling. Does the numeric labeling of statements follow an ascending

sequence throughout each program unit?

4-28

T T T A T T T Y T Y T T T T I T T S T T T e T ey DA

Statement ordering. Do all statements appear in a prescribed order? For example, in a
Fortran program, do all FORMAT statements appear at the end and data specification
i statements before the first executable statement of a routine?

Statement format. Do all statements follow a prescribed set of formatting rules that
improve program clarity? For example, are all DO-WHILE loops appropriately indented?

As demonstrated by this list, code auditing may vary in sophistication according to their
function. Each form, however, requires some form of syntax analysis to be performed.

Code must be parsed and given an internal representation suitable for analysis. Because
: this type of processing is found in many static analysis tools, code auditing may be part of
a more general tool having many capabilities. For example, a compiler is a form of code
auditing that checks for adherence to the specifications of a language definition. PFORT,
a tool used to check Fortran programs for adherence to a portable subset of American
National Standard (ANS) Fortran, also has the capability of generating a cross-reference

E.

listing.
Code auditing is useful to programmers as a means of self-checking their routines prior to
turnover for integration testing. These tools are also of value to software product

assurance personnel during integration testing, prior to formal validation testing, and

again prior to customer delivery.

. d. Example. An example of code auditing follows:

Application. A flight control program is to be coded entirely in PFORT, a portable subset
of ANS Fortran. The program is to be delivered to a military government agency who will

install the software on various computer installations. In addition, the customer requires

block.

that each routine in the program be clearly documented in a prescribed format. All
internal program comments are to be later compiled as a separate source of documenta-
s tion for the program.
Error. A named common block occurs in several routines in the program. In one routine,
' the definition of a variable in that block has been omitted because the variable is not
_ referenced in that routine. This is a violation of a rule defined in PFORT, however, which
. requires that the total length of a named common block agree in all occurrences of that

Error discovery. A code auditor which checks Fortran for adherence to PFORT detects
_ this error immediately. The programmer of this routine is informed that the routine is to
g be appropriately modified and that any confusion over the use of the variable is to be
clarified in the block of comments that describe the function of each defined variable in
the routine. A code auditor that checks for the presence of appropriate comments in each
routine is used to verify that the use of the variable is appropriately documented. At the
‘. end of code construction, all such internal program documentation will be collated and
summarized by another code auditor which processes machine-readable documentation

embedded in source code.

E e. Effectiveness. Code auditing is very effective in certifying that software routines

B
el
Lo
L
L.

have been coded in accordance with prescribed standards. It is much more reliable than
manually periormed code audits and are highly cost effective as they are less time

consuming than manual audits.

f. Applicability. Code auditing can be applied generally to any type of source code and i
applicable during design verification through PQT/FOT test phases. However, each
specific tool will be language dependent (i.e., will operate correctly only for specified

source languages), and will only accept input that appears in a prescribed format.

g. Maturity. Code auditors have been used with favorable results and have been

extensively automated. Code auditing is a highly mature technique.

h. User Training. No special training is required to implement this technique. As code
auditing may be implemented by a wide variety of people (programmers, managers,
quality assurance personnel, customers), ease in their use is an important attribute. In
order to use this technique effectively, however, some learning is required to gain

familiarity with the standards on which the auditing is based.

i. Costs. Code auditing is generally very inexpensive as their overhead is usually no more

than the cost of a compilation.

j- References.

(BRO 78) (HEI 82)
(FIS 74) (BRO 82)
(RYD 75) (SMI 76)

4-30

o '-.4-‘."' . Sv et
‘s_-.; e \ Y _‘_. Lw_;q ‘!‘):. .‘\.:\‘.\ -‘l..__"A 1“'\‘3_.1"._1.1-. ATV

.

PR

[1
[J

4.3.1.2.2 Interface Checking oL

F Interface checking involves analyzing the consistency and completeness of the

information and control flow between components, modules or procedures of a system.

a. Information Input. Information needed to do interface checking consists of either—

. A formal representation of system requirements. s

] ®
. A formal representation of system design. o
. A program coded in a high-level language.

b. Information Output. The output information of this technique shows module interface R

inconsistencies and errors. The information can be provided as error messages included .

with a source listing or as a separate report.

c. OQOutline of Method. Interface checking will analyze a computer processable form of a

software system requirements specification, design specification or code. The method for

each of the three representations -requirements, design, and code - will be illustrated

below by examining the interface checking capabilities of three existing tools. These

three tools were chosen primarily for explanatory purposes and should not be regarded as

a recommendation.

PSL/PSA (Problem Statement Language/Problem Statement Analyzer) (BOE 75) is an

automated requirements specification tool. Basically, PSL/PSA describes system require-

ments as a system of inputs, processes and outputs. Both information and control flow are

represented within PSL. Interface checking performed by PSA consists of ensuring that ':‘:":-f‘;

all data items are used and generated by some process and that all processes use data. - -"j:'.

Incomplete requirements specification are, therefore, easily detected.

The Design Assertion Consistency Checker (DACC) (PRE 79) is a tool which analyzes

module interfaces based on a design which contains information describing for each

module the nature of the inputs and outputs. This information is specified using assertions

to indicate the number and order of inputs, data types, units (e.g., feet or radian),

acceptable ranges, and so on. DACC checks module calls as specified in the design

against the assertions for the called module for consistency and produces an inconsistency

report where assertions have been violated.

2o 8 K
- DYRCNRENN LIS

~ - - - .- - - . - - - Wt -
. ~ - . - -t e . - - - " . . - -
P T T L T R T T T T, R U,

AL) OO

.........

PFORT is a static analysis tool which primarily is used for checking Fortran programs for
adherence to a portable subset of the Fortran language but it also performs subprogram
interface checking. PFORT checks the matching of actual with dummy arguments
checking for unsafe references, such as constraints being passed as arguments, which are

subject to change within the called subprogram.

Interface checking capabilities can also be included within a particular language's
compiler as well. For example, Ada (TEI 77) provides a parameter passing mechanism
whereby parameters are identified to be input or output or input/output. Moreover data
type and constraints (e.g., range and precision) must match between the actual arguments

and the formal parameters (in non-generic subprograms).

d. Example. An example of interface checking is presented in this section.

Application. A statistical analysis package written in Fortran utilizes a file access

system to retrieve records containing data used in the analysis.

Error. The primary record retrieval subroutine is always passed as the last argument in
the argument list of the subroutine call. A statement number in the calling program is to
receive control in case an abnormal file processing error occurs. One program, however,
fails to supply the needed argument. The compiler is not able to detect the error.
Moreover, the particular Fortran implementation is such that no execution time error
occurs until a return to the unspecified statement number is attempted at which time the

system crashes.

Error discovery. This error can easily be detected by using an interface checker at either
the design (e.g., DACC) or coding phase (e.g., PFORT) of the software development
activity. Both DACC and PFORT can detect incorrect numbers of arguments.

e. Effectiveness. Interface checking is very effective at detecting a class of errors

which can be difficult to isolate if left to testing. This technique will generally check

for—
. Modules which are used but not defined.
. Modules which are defined but not used.

. Incorrect number of arguments.

T T T ST T

AR "

. Data type mismatches between actual and formal parameters,
. Data constraint mismatches between actual and formal parameters.
. Data usage anomalies. S

»

P O WP

-y

They are generally more cost effective if provided as a capability within another tool such

as a compiler, data flow analyzer or a requirements/design specification tool.

f. Applicability. Interface checking is applicable during algorithm confirmation through
integration test and independent of application type and size.

g. Maturity. This technique is widely used with the aid of automated tools (DACC and SR
PFORT).

h. User Training. The use of this technique requires only a very minimal learning effort.

i. Costs. Interface checking can be quite inexpensive to use, usually much less than the
cost of a compilation.

j. References.

(BOE 75) (HEI 82) (GAN 80)
(PRE 79) (TEI 77) (MEL 79)
(RYD 75) (BRO 82) (MEL 81)

4.3.1.2.3 Physical Units Checking

Many (scientific, engineering, and control) programs perform computations whose results
are interpreted in terms of physical units, such as feet, meters, watts, and joules.
Physical units checking enables specification and checking of units in program
computations, in a manner similar to dimensional analysis. Operations between variables

which are not commensurate, such as adding gallons and feet, are detected.

a. Information Input. Units checking requires three things to be specified within a

program: the set of elementary units used (such as feet, inches, acres), relationships
between the elementary units (such as feet = 12 inches, acre = 43,560 feetz), and the
association of units with program variables. The programming language used must support
such specifications, or the program must be preprocessed by a units checker.

4-33

U ST LT e T e e e)
Cfat et g Ny, »
Lntadalke &aate s o

Ry A iaan 2y

b. Information Output. The information output depends upon the specific capabilities of

the language processor or preprocessor. At a minimum, all operations involving variables
which are not commensurate are detected and reported. If variables are commensurate,
but not identical, (i.e., they are the same type of quantity, such as units of length, but one
requires application of a scaler multiplier to place it in the same units as the other) the
system may insert the required multiplication into the code, or may only report what

factor must be applied by the programmer.

c. Outline of Method. The specification of the input items is the extent of the actions

required by the user. Some systems may allow the association of a units expression with
an expression within the actual program. Thus one may write LOTSIZE = (LENGTH *
WIDTH feet2) as a boolean expression, where the product of LENGTH and WIDTH
must 1 units of square feet. The process of ensuring that LENGTH * WIDTH is in

square feet is the responsibility of the processing system.

d. Example. A short program in Pascal-like notation is shown for computing the volume
and total surface area of a right circular cylinder. The program requires as input the
radius of the circular base and the height of the cylinder. Because of peculiarities in the
usage environment of the program, the radius is specified in inches, the height in feet;
volume is required in cubic feet, and the surface area in acres. Several errors are present
in the program, all of which would be dete_ted by the units checker.

In the following, comments are made explaining the program, the errors it contains, and

how they would be detected. The comments are keyed by line number to the program.

Line Number Comment
2 All variables in the program that are quantities will be expressed in

terms of these basic units.

3 These are the relationships between the units known to the units
checker.

5-10 Variable radius is in units of inches, height is in units of feet, and
so forth.

4-34

|
[P NI
.
S J \""
[
L J

| i TORN ADS _‘,.‘-' . .".._' ".,‘> - Rt mﬂ AR T DR o ——————— .' AN
b -
. e
e 1
P 12 Input values are read into variables radius and height. 1
b
13 Lateral surface must be expressed in square feet. (RADIUS/12) is P ;j

in feet and can be so verified by the checker.

15 Lateral-surface and top-surface are both expressed in square feet,
thus their sum is the square feet also. Area is expressed in acres, s P
however, and the checker will issue a message to the effec* that ' v . _
though the two sides are commensurate the conversion factor of 7 ,
43,560 was omitted from the right side of the assignment. D '.:-.:;- . j
! o B
F 16 The checker will detect that the two sides of the assignment are . oo ..' : 1
g not commensurate. The right side is in units of feetq, the left is in ;'-_\-:::::‘ g i
i feet3. L h‘
} o i . ,'.,--; i
.f. (1) program cylinder (input, output); ' .)
- (2) elementary units inches, feet, acre; :
o (3) units relationships feet = 12 inches; acre = 43,560 feetz;
' () constant pi = 3.1415927
(5) var radius (*inches*), .
(6) height (*feet*), :I:',
7 volume (*feetB*), :-':;
(8) area (*acre#), RO
(9) lateral-surface (*feetz*), Lo Oy
(10) top-surface (*feetz*): real; ‘i_:";-:-_ s ‘
(11) begin R
(12) read (radius, height); .
(13) lateral_surface := 2*PI*(RADIUS/12)*height; d - . B
(14) top_surface := PI* (RADIUS/12)? i
(15) area := lateral_surface + 2* top_surface;
(16) volume := PI *(radius *height);
(17) write (area, volume);
(18) end;

-
ata

e. Effectiveness. The effectiveness of units checking is limited only by the capabilities
of the units processor. Simple unit checkers may only be able to verify that two variables
are commensurate, but not determine if proper conversion factors have been applied.
That is, a relationship such as 12 inches = feet may not be fully used in checking the
computations in a statement, such as line 13 of the example. There we asserted that
(radius/12) would be interpreted as converting inches to feet. The checker may not
support this kind of analysis however, to avoid ambiguities with expressions such as "one-
twelfth of the radius."”

f. Applicability. Certain application areas, such as engineering and scientific, often deal
with physical units. In others, however, it may be difficult to find analogies to physical
units. In particular, if a program deals only in one type of quantity; such as dollars, the
technique would not be useful. Units checking can be performed during unit and module

testing.

g. Maturity. This technique has been tested and is widely used.

h. User Training. Dimensional analysis is commonly taught in first year college physics
on statics; conversion from English to metric units is common throughout society. Direct
application of these principles in programming, using a units checker, should require no
additional training beyond understanding the capabilities of the specific units checker and

the means for specifying units-related information.

i. Cost. If the units checking capabilities is incorporated directly in a compiler, its usage
cost should be negligible. If a preprocessor is used, such systems are typically much
slower than a compiler (perhaps operating at 1/10 compilation speed), but only a single
analysis of the program is required. The analysis is only repeated when the program is

changed.

jo References.
(KAR 78) (HEI 82)

4.3.1.2.4 Data Flow Analysis

Data flow analysis determines the presence or absence of those errors that can be

4-36

S e e 4
) [) 4
08
R

] ®

-y

. . . S TN
- D - .. - " - . 0] PR M -
. . ST O
’ MR WA BURT SRR SRR SRS IN TS US VoS
- atatn

MANCRS SuS ety

r.v—Fﬁvw, -
3 .. ‘A..-.

represented as particular sequences of events in a program's execution. This anomaly
detection technique is not to be confused with data-flow guided testing (sec. 4.3.1.6), a
specialized test technique used primarily for compiler design and optimization.

a. Information Input. Data flow analysis algorithms operate on annotated graph

structures that represent the program events and the order in which they can occur.
Specifically, two types of graph structures are required: a set of annotated flow graphs
and a program invocation (or call) graph. There must be one annotated flow graph for
each of the program's procedures. The flowgraph is a digraph whose nodes represent the
execution units (usually statements) of the procedures, and whose edges are used to
indicate which execution units may follow which other execution units. Each node is
annotated with indications of which program events occur as a consequence of its
execution. The program invocation (call) graph is also a digraph whose purpose is to
indicate which procedures can invoke which others. Its nodes represent the procedures of
the program, and its edges represent the invocation relation.

b. Information Qutput. The output of data flow analysis is a report on the presence of

any specified event sequences in the program. If any such sequences are present, then the
identity of the sequence is specified with a sample path along which the illegal sequence
can occur. The absence of any diagnostic messages concerning the presence of a
particular event sequence is a reliable indicator of the absence of any possibility of that

sequence.

c. Outline of Method. Data flow analysis relies basically on algorithms from program

optimization to determine whether any two particular specified events can occur in
sequence. Taking as input a flowgraph annotated with all events of interest, these
algorithms focus on two tasks and determine (1) whether there exists some program path
along which the two occur in sequence and (2) whether on all program paths the two must
occur in sequence. In case one wishes to determine illegal event sequences of length

three or more, these basic algorithms can be applied in succession.

A major difficulty arises in the analysis of programs having more than one procedure,
because in the case the procedure flowgraphs often cannot be completely annotated prior
to data flow analysis. Flowgraph nodes representing procedure invocations must be left
either partially or completely unannotated until the flowgraphs of the procedures they

4-37

I
S dde g g

ta e el e
s J\'

Aeednn A A A O A AN 4"

. P
.o
bt A

R
. e et
. e s e
PSP PPy

.1 .« »
s AR e s

represent have been analyzed. Hence, the order of analysis of the program's procedures is
. critical. This order is determined by a postorder traversal of the invocation graph, in
which the bottom level procedures are visited first, then those which invoke them, and so
forth until the main-level procedure is reached. For each procedure, the data flow
analysis algorithms must determine the events that can possibly occur both first and last
and then make this information available for annotation of all nodes representing
invocations of this procedure. Only in this way can it be ensured that any possible illegal

event sequence will be determined.

d. Example. The standard example of the application of data flow analysis is the
discovery of references to uninitialized program variables. In this case, the program
events of interest are the definition of a variable, the reference to a variable, and the
undefinition of a variable. Hence, all procedure flowgraphs are annotated to indicate
which specific variables are defined, referenced, and undefined at which nodes. Data flow
analysis algorithms are then applied to determine whether the undefinition event can be
followed by the reference event for any specific variable without any intervening
definition event for that variable. If so, a message is produced, .ndicating the possibility
of a reference to an uninitialized variable and a sample program path along which this will
occur. A different algorithm is also used to determine whether for a specific variable
undefinition must, along all paths, be followed by reference without intervening defini-
tion. For invoked procedures, these algorithms are also used to identify which of the
procedure's parameters and global variables are sometimes used and always used as inputs
and outputs. This information is then used to annotate all nodes representing the

invocation of this procedure, to enable analysis of these higher level procedures.

Data flow analysis might also be applied to the detection of illegal sequences of file
operations in programs written in languages such as COBOL. Here the operations of
interest would be opening, closing, defining (i.e., writing), and referencing (i.e., reading) a
file. Errors whose presence or absence could be determined would include: attempting to

use an unopened file, attempting to use a closed file, and reading an empty file.

e. Effectiveness. As noted, this technique is capable of determining the absence of event
sequence errors from a program, or their presence in a program. When an event sequence
error is detected, it is always detected along some specific path. Because these

techniques do not study the executability of paths, the error may be detected on an

4-38

- C e s
R R I e P
AT s

o y——

unexecutable path and hence give rise to a spurious message. Another difficulty is that
this technique is not reliable in distinguishing among the individual elements of an array.
Hence, arrays are usually treated as if they were simple variables. As a consequence,
illegal sequences of operations on specific array elements may be overlooked.

f. Applicability. Data flow analysis is applicable during unit and module testing phases.

> The applicability of this technique is only limited and restricted by the availability of the
(considerable) tools and techniques needed to construct such flowgraphs and call graphs.

g. Maturity. This technique has been proven very effective and efficient and is rapidly

appearing as a capability in many state-of-the-art testing tools.

h. User Training. This technique requires only a familiarity with and understanding of the

output message. No input data or user interaction is required.

i. Costs. This technique requires computer execution. The algorithms employed,
however, are highly efficient, generally executing in time which is linearly proportional to
program size. Experience has shown that the construction of the necessary graphs can be

a considerable cost factor.

As noted above, no human input or interaction is required, resulting in only the relatively

low human cost for interpretation of results.

j. References.
(OST 76) (HEI 82) (GAN 80)
(FOS 76) (MEL 81)

4.3.1.3 Structure Analysis and Documentation

This section contains a description of a test technique that detects errors concerning the
control structures (modules, subroutines, branches), and code structures (iterations) of a
language. Also, this section contains descriptions of various reports that are generated as

a by-product of static analysis.

4-39

.

._.-\,-:.'_'..._. NI A T A
MICI T B T P BN B I DL L

4.3.1.3.1 Structure Analysis

Application of structure analysis to either code or design allows detection of some types
of improper subprogram usage and violation of control flow standards. Structure analysis

is also useful in providing required input to data flow analysis tools and is related in

N principle to two code auditing techniques.

a. Information Input. Two input items are required by structure analysis. The first is the

text of the program or design to be analyzed. The text is to be provided to the analyzer
in high order language source code, but in some cases in an intermediate form, i.e., after

scanning and parsing, but not as object code.

The second input item is a specification of the control flow standards to be checked.
These standards are often completely implicit in that they may be part of the rules for
programming in the given language or design notation. An example of such a rule is that
subprograms may not be called recursively in Fortran. Individual projects may, however,
establish additional rules for internal use. Many such rules, for instance limiting the
number of lines allowed in a subprogram, can be checked by code auditing. Others,
however, can require a slightly more sophisticated analysis and are therefore performed
by structure analysis. Two examples in this category are "All control structures must be

well nested"; and "Backward jumps out of control structures are disallowed."

b, Information Qutput. Error reports and a program call graph are the most common

output items of structure analysis. Error reports indicate violations of the standards
supplied for the given input. Call graphs indicate the structure of the graph with respect
to the use of subprograms: associated with each subprogram is information indicating all
routines which call the subprogram and all routines which are called by it. The presence
of cycles in the graph (A calls B calls A) indicate possible recursion. Routines which are
never called are evident, as well as attempts to call nonexistent routines. Also the

presence of structurally dead code is identified.

In checking adherence to control flow standards, this technique will provide a flow graph
for each program unit. The flow graph represents the structure of the program, with each

control path in the program represented by an edge in the graph.

4-40

2PN Rl BER AN e P dCN i G- gt Jnih e angh Seslt ing 5 - A e e e e oo o ————— -

The flow graph and the call graph are items required as input by data flow analysis, and it

is common for the two analysis capabilities to be combined in a single automated tool.

¢c. Outline of Method. Since structure analysis is an automatable static analysis

technique, little user action is required. Aside from providing the input information, the
user is only required to peruse the output reports and determine if program changes are
. required. Some simple manifestations of the tool may not provide detailed analysis
reports and therefore rely on the user to examine, for example, the call graph for the
presence of cycles.

- d. Example. An example of a structural implementation error is as follows: An online
E management information system program calls a routine MAX to report the largest stock
transaction of the day for a given issue. If MAX does not have the necessary information
already available, RINPUT is called to read the required data. Since RINPUT reads many
transactions for many issues, a sort routine is utilized to aid in organizing the information
before returning it to the caller. Due to a keypunch error the sort routine calls routine
MAX (instead of MAXI) to aid in the sorting process. This error can be detected as a
cycle in the call graph or by locating all disconnected flow-graph components, and will be
reported through use of structure analysis.

. MIS

EL MAX

P:'

: RINPUT

| J

E .

- MAXI SORT

- J SN

T

An example of a violation of control flow standards is as follows. As part of the

-

programming standards formulated for a project, the following rule is adopted: All jumps
from within a control structure must be to locations after the end of the structure. The

following segment of Pascal contains a violation of this rule which would be reported.

441

-

v g — W & W IT - .
b

- -

sy

P A
| DAFLPRSURPLNS |

-
ot

i LR R
Ot

IMANES

100 : X: = 100;
while X 70 do

begin

if Z = 5 then goto 100;

end;
e. Effectiveness. Structure analysis is completely reliable for detecting structure errors
and violations of the standards specified as input. The standards, however, only cover a
small range of programming standards and possible error situations. Thus, this technique
is useful only in verifying very coarse program properties. This technique's prime utility
therefore is in the early stages of debugging a design or code specification. This
technique is useful in detecting unreachable code, infinite loops, and recursive procedure

calls, and can also provide helpful documentation on the procedure-calling structure of

large programs.

f. Applicability. This technique may be applied from algorithm confirmation through
integration test. Particular applicability is indicated in systems involving large numbers

of subprograms and/or complex program control flow.

g. Maturity. Structure analysis is automated and has been shown to be effective in

detecting structural errors and violations of specified standards.

h. User Training. Minimal training is required for use of the technique. See "Outline of
Method."

i. Cost. Little human cost is involved as there is no significant time spent in preparing
the input or interpreting the output. Computer resources are small since the processing

required can be done very efficiently and only a single run is required for analysis.

jo References.
(FAI 78) (HEI 82) (MEL 81)
(TAY 80B) (GAN 80) (MEL 79)

R e T LI I
U W W VR R WAL U TR)

LN R

TUE R T

§.3.1.3.2 Documentation

A by-product of many static analysis techniques are reports produced by automated

testing tools. This information can be used to help document the program being analyzed.

Descriptions of typical reports are as follows.

a. Global cross-reference report indicating input/output usage for variables in all
modules.

b. Module invocations report indicating the calling modules and showing all calling
statements.

c. Module interconnection report showing the program's module calling structure.

d. Special global data reports for variables in global areas (e.g., COMMON blocks and
COMPOOLs).

e. Program statistics including total size, number of modules, module size distribution,
statement type distribution, and complexity measures.

f. Summaries of analysis performed, program statistics, and errors and warnings

reported.
References.
(GAN 80) (MEL 81)
(HEI 82) (MEL 79)

4.3.1.4 Program Quality Analysis

This section contains descriptions of complexity ratings and quality measurements. To
fully explain the methodology of these topics is beyond the scope of this report. A brief
description is supplied here as well as a list of references.

4.3.1.4.1 Halstead's Software Science

Halstead's software science involves several measures of software quality. He combines
the disciplines of experimental psychology and computer science into a theory of software
complexity. There are four quantities that Halstead's theory utilizes: simple counts of
operands and operators, and the total frequencies of operands and operators. With these
quantities, Halstead has developed measures for the overall program length, potential
smallest volume of an algorithm (the most succinct form in which an algorithm could ever

4-43

T, e y—. D2 it tullh et i e " T CHM-inte Sha It e it e CShEE D i e e e

be expressed), actual volume of an algorithm in a particular language program level (the
difficulty of understanding a program), language level (a measure of the relative ease of
] encoding an algorithm in a specific source language), programming effort (number of
elementary discriminations necessary to encode a specific algorithm), program

- development time, and predicting bug rates in a system.

I There is an overall opinion that the Halstead theory on program complexity seems to
contain weaknesses, theoretically and practically. Despite these opinions, Halstead
metrics have been applied with positive results (FIT 78). However, Hamer and Frewin

claim that the "experimental support is largely illusory" (HAMY2).

r~
FV]

a. Information Input. The input to Halstead's measure is the source code.

b. Information Output. The output of Halstead's measure varies depending on the desired
p’ analysis. The above paragraph gives a list of the various measures.

c. Outline of Method. Computing the various measures (metrics) requires counting the

number of operands and operators in the algorithm or source code, depending on the
metric. It is the vagueness in actually classifying and counting operators and operands

that has caused much confusion in interpreting the results of various researchers.

- At present, researchers select counting rules that work in their environment. There are
i no consistent counting rules that work in all environments. Some metrics seem very
' stable, almost insensitive to the counting rules used to compute them; while others vary

'.-,: widely with very minor counting rule changes.

Halstead's book is notably vague on practical implementation of the theory and Halstead's

death occurred before these questions were resolved. For specific information on
methodology, it is necessary to examine the work of others who have applied Halstead's

metrics as opposed to reading Halstead's book.

d. Example. This section will demonstrate how the level of difficulty metric is applied to

a simple program.

o~
3
A

L L

.
Ad 122 L

P
Py

e et e T e . .
IO ._--,«.,.._-_._‘-_._....-..
LS W N L SAPS, UO0 L PO T

The level of difficulty metric asserts that a program with a high level of difficulty is
likely to be more difficult to construct and therefore, is likely to be error-prone. The
equation for this metric is—

L =(2/n1) * (n2/N2),

where, L = the level of program difficulty,
¢ nl = number of unique or distinct operators,
- n2 = number of unique or distinct operands,
N2 = total usage of all the operands.

This equation is applied to the following program—

C COMPUTE FIBONACCI SEQUENCE
C M1 AND M2 ARE CONSECUTIVE TERMS

ML = -l

M2 = |

DO 10 KTR = 1,30,2
Ml = Ml + M2
M2 = Ml + M2
PRINT, ', KTR, ") ', Ml

K = KTR +1 o
PRINT, '(, K, ") ', M2 AR
10 CONTINUE
The following table contains the operator and operand counts for the above program— , ;»-‘»'-i
Operator]| j £(1, j) Operand | j £(2, j)
- 1 6 Ml | 5
DO 2 1 M2 2 5
+ 3 3 KTR 3 3
PRINT 4 2 K 4 2
CONTINUE | 5 l

A e A e et C R ST U SEE JCI AR 2 e SR Bco i n s e e e o

Applying this data into the level of difficulty equation resuits in L = 0.11,

where, £(1,3) number of occurrences of the jth most frequently

occurring operator, where j = I, 2, ..., nl. T

£(2,))

number of occurrences of the jth most frequently used

operand, where j = 1, 2, ..., n2.

In conclusion, the fibonacci program is rated a relatively low level of difficulty (.11);
therefore, it follows that the program is simple to construct and is not likely to be error- e
prone. This is a plausible conclusion given the sample program. For more examples of j' .5:‘-",_ . f.:']

Halstead's metrics, see HAL77 and HENS81.

e. Effectiveness. A subset of Halstead's measures have shown to be qualitatively
effective. A major difficulty with this technique is that there are no standards imposed
on the counting rules. Research in this area will yield a more practical and usable

methodology.

Halstead's theory has been the subject of considerable evaluative research with such
measures as predicting the number of bugs in a program (BEL74, COR76, FIT78, FUM76,
OTT79), the time required to implement a program (GOR76, HAL73), debugging time
(CUR79, LOV76), and algorithm purity (BUL74, ELS76, HAL73).

f. Applicahility. A subset of the various metrics Halstead has proposed have been applied
with positive results. It is suggested that future usage of Halstead's metrics should center
around those metrics previously studied. This will provide a methodology and guideline to
follow with respect to counting rules. This technique is applicable during unit and module

test phases.

g. Maturity. Halstead's software science is still in the developmental/experimental
stages due to its theoretical weaknesses and the lack of standardized counting rules.

However, this technique has been used with varying degrees of results.

h. User Training. To apply Halstead's metrics, knowledge of previous researcher's works

is necessary to gain an understanding of the methodology.

i. Costs. This technique is laborious to implement unless it is automated. The counting

of operators and operands is a tedious and time consuming task.

j. References.

(BEL 74) (ELS 76) (HAL 73) (OTT 79)
(BUL 7%) (FIT 78) (HAL 77) (SHE 83)
(COR 76) (FUM 76) (HAM 82)
(CUR 79) (GOR 76) (LOV 76)

4.3.1.4.2 McCabe's Cyclomatic Number

McCabe's cyclomatic number measures the complexity of a source code module by
examining the control flow (IF, WHILE, DO, CASE type statements). It provides a concise
means to gauge the number of paths and size of a module of code and therefore locate

error-prone sections of code.

a. Information Input. The source code or a detailed design document containing

identifiable control flow statements can be the input to this technique.

b. Information Qutput. The output is the cyclomatic number. This number is an indicator

of the complexity of the code. Tools can be used that would provide other insights into
the complexity of the code, such as call graphs.

¢. Outline of Method. The methodology of this technique involves counting the number of

edges, vertices, and connected components of a graph of the program code. The
cyclomatic number is then defined as, V(G) = e - n + 2p, where e = no. of edges, n = no. of
vertices, and p = no. of connected components. Below is a set of control graphs of
constructs found in a structured programming language (MCC76).

SEQUENCE IF THEN ELSE
v"-ZO,s, VI‘-",:Z

WHILE UNTIL

va3-3.2
v23-3.2:2 ti=2

Figure 4.3.1.4-1. Control Graphs of Language Structures
4-47

ey

o aChacite
. Y v

-...T-T,

.
.

R AR
-. -.l !

SO a"t
o e

Rt e G . " LAy

The edges are a count of the lines, the vertices are a count of the circles and decision
symbols. The connected components, p, is greater than one when the cornplexity measure
is applied to a collection of programs, for example, if a main program, M, calls
subroutines A and B, the control structures would look like:

McCabe has suggested that an upper bound of V(G) € 10 should be maintained for a
module of code. Since the cyclomatic number is based on the examination of control
flow, it is therefore a measure of the number of paths through a module of code. By
maintaining V(G) at ten or less than ten, control of the number of paths through a module
is gained and module testing is facilitated. When V(G) >10, the number of paths through
the code should be reduced. The control graph provides a visual picture of the code

structure; therefore, it also is helpful in determining where to break up the code.

Two methods to simplify the complexity calculation have been proven. Assuming p = I,
V(G) = Pi + 1, where Pi = the number of predicates (condition statements). This method
requires a count of the predicates in the code. It is not necessary to extract a control

graph from the code; however, a control graph is a helpful aid.

The second method involves a visual inspection of the control graph. Given a control

graph of a program, a count of the regions is equal to V(G). See MCC76 for details of this
method.

All three of the methods to calculate the complexity of a program are useful. In some
cases, it is simpler to count the number of predicates, in other cases the regions, or the
edges, vertices, and connected components.

4-48

LASEE e aves oup sl aah sen ade ore GRS atiE SINE Sl

- T———r

d. Example. Given the following example, a count of the number of predicates is the
simplest method to calculate the complexity number. This method was applied to a

quadratic equation solver program.

No. of Predicates Program Code
AxX*%x2 4+ B*X+C=0
QUADRATIC EQUATION SOLVER
READ, A, B, C
IF (A .EQ. 0.0) THEN
IF (B .EQ. 0.0) THEN . L
IF (C .EQ. 0.0) THEN (] o
PRINT, 'TRIVIAL' ’
ELSE
PRINT, 'IMPOSSIBLE'
END IF o
ELSE e e
X =-C/B ¥)
PRINT, 'SINGLE ROOT'
PRINT, X
END IF
ELSE
DISC = B**2 -4 0%¥A*C
IF (DISC .GT. 0.0) THEN ']
PRINT, 'REAL ROOTS' L :
X1 = (-B+SORT(DISC))/(2.0*A)
X2 = (-B-SQRT(DISC))/(2.0*A)
PRINT, X1, X2
END
IF (DISC .EQ. 0.0) THEN
PRINT, '"MULTIPLE ROOT'
X = -B/(2.0*A)
PRINT, X

oNQ]

END

IF (DISC .LT. 0.0) THEN
PRINT, 'COMPLEX ROOTS'
X = -B/(2.0*A)
Y = SORT(ABS(DISC))/(2.0*A)
PRINT, 'X', '+, 'Y, T
Y =-Y
PRINT, 'X', '+, 'Y, 'T'

END

END

OOOOOOOOO\OOOO\AOOOOO#OOOOOOOOOOO\»N—OOO
a—

4-49

mrﬁ Py POy ———

T —

The cvclomatic number, V(QG), is defined as—
V(G) = Pi+ 1,

where. Pi = the number of predicates. This equation applied to the example yields V(G) =
7. Since V(Q) for this example is less than ten, the program does not need modification.
In other words. the complexity of the program is not great; the number of paths through

the code is considered manageable in the context of testing.
A detailed example is provided in MCC76.

e. Effectiveness. The cyvclomatic number is effective in determining and controlling the
number of program paths in a module of code. There is growing evidence that there exists
a direct relationship between code complexity and the number of errors in a segment of
code and the time to find and repair such errors. Therefore, it facilitates manageable

testing of the code.

f. Applicabilitv. The cyclomatic number can be applied to high-order languages that
allow easv detection of control structures (e.g., IF, DO, WHILE, CASE).

When used simultaneously with the coding phase of the software development life cycle,

the metric provides an effective way to gauge the size of a module.

g. Maturity. McCabe's complexity measure has progressed beyond the developmental and
experimental stage and is widely used. Though there is an indication of a positive
relationship with cost and number of errors, this relationship has not been quantitatively

studied.

h. User Training. 1f this technique is automated, there is little work for the user other

-han interpreting the results. A minimal understanding of McCabe's theory is necessary.

4-50

' ®
S
!
- “
i
Kl
-]
.
" .o il
t *
:
—.v-—*b Eaeasen e |
) ..

i. Costs. If this technique is not automated, time is spent visually inspecting the code for
control structures. Depending on the amount of code to be examined, this could be time

consuming.

j. References.
(MCC 76)

4.3.1.8.3 Software Quality Measurement.

Software quality measurement is a method of assessing the quality of software (e.g.,
reliability, maintainability, testability, correctness, etc.). The metrics are used to
measure the presence of the desired qualities at key review points during the development

process, and thus allowing periodic prediction of the quality level for the final product.

a. Information Input. The necessary inputs are all tangible software development

products (e.g., specifications, standards, code).

b. Information Output. The output of this technique consists of a compliance document,

which presents the relationship between the metric scores and the specified requirements.
This document is presented at key review points; it provides a picture of the software

quality trend over time.

c. Outline of Method. There are two ways to implement software quality metrics. This

first method is to apply the metrics during the full scale development of a product. An
outline of this methodology is as follows:
. Select quality factors. Software quality metrics can be explained by the following

framework.

FACTOR + User-oriented view of

//‘\ product quality.
CRITERION CRITERION CRITERION - Software-oriented attri-

butes which indicate qual-
ity.

METRICS METRICS METRICS - Quantitative measures of
attributes.

Figure 4.3.1.4-2. Software Quality Metrics Framework

Software quality factors are user-oriented goals (e.g., reliability, maintainability). These
factors could be required by contract or a result of some project goal. (Definitions of the
software quality factors can be found in (QUA83)).

. Select factor attributes. Depending on the particular system (e.g., uniprocessor,

distributed), only a subset of the software factor attributes will apply.

. Establish quantifiable goals. This step requires establishing realistic goals (e.g., a

reliability level of 0.98).

The remaining steps of this methodology are described under the second method. This

———

F method evaluates a product that has been completed. The following steps are applied

regardless of the method chosen.

Y

. Select the software products. Obtain the inputs (i.e., documents and code).

. Select and fill out the metric worksheets. The metric worksheets contain questions
concerning specific software criterion (fig. 4.3.1.4-2). For instance, a metric that
measures the simplicity criterion asks: Is the design organized in a top-down
hierarchical fashion? The metric worksheets are applied to the software products or

inputs as previously listed.

. Select scoresheets and score elements, metrics, and criteria factors. Metric
worksheets are the inputs to the scoresheets. Scoresheets combine the metrics to
form criteria scores; the criteria scores are then combined to form a factor score
(fig. 4.3.1.4-2).

. Perform data analysis and generate report. Evaluate the scoring for trends in the

data. !/nusual scores can be checked for reasonableness at this point.

. Analyze results. The results will indicate whether any corrective actions need to be

taken.

d. Example. The methodology can be broken down into a specification phase and an
evaluation phase. The first phase involves selecting quality factors and attributes and
establishing quantifiable goals. The second phase involves scoring the data within the

framework of the specifications and analyzing the results.

_‘r"i.:v‘,v_a.v;r.vr,:;‘—.v [A
P e ‘e o

L
I

following table.

Specification Phase

The software quality factor reliability is selected for this exarnple. The definition of
reliability is the probability that the software will perform its logical operations in the
specified environment without failure. The attributes or criteria associated with the

quality factor reliability and the metrics associated with the criteria are listed in the

Criteria Definition
Accuracy Those characteristics of the software that provide the
(AC) required precision in calculations and outputs. The rnetric
associated with accuracy is AC.l - Accuracy Checklist.
Anomaly Those characteristics of the software that provide for
Management continuity of operations under and recovery frormn non-
(AM) nominal conditions. The metrics associated with anomaly
management are--
AM.!1 - Error Tolerance/Control Checklist
AM.2 - Improper Input Data Checklist
AM.3 - Computational Failures Checklist
AM.4% - Hardware Faults Checklist
AM.5 - Device Errors Checklist
AM.6 - Communication Errors Checklist
AM.7 - Node/Communication Failures Checklist
Simplicity Those characteristics of the software that provide for the
(SI) definition and implementation of functions in the rnost non-
complex and understandable manner. The metrics associated
with simplicity are--
SI.1 - Design Structure Measure
SI.2 - Structured Language or Preprocessor
SI.3 - Data and Control Flow Complexity Veasure
SI.4 - Coding Simplicity Measure
SI.5 - Specificity Measure
SI.6 - Halstead's Level of Difficulty Measure

Evaluation Phase

A quality goal of 0.90 is chosen.

The following steps of the evaluation process involves scoring the metrics, criteria, and
the quality factor. This information is given in the following table. Since the measured

score for reliability (.83) is less than the desired reliability level of 0.90, corrective

."-

IR,

e et
Slatata® .

Tr————— Ry A e e

actions need to be taken. With a glance at the data given above, it is obvious that there
are two suspect values, AM.5 and S1.2. These unusual scores could resuit from incorrect
metric data or from a poor quality product (software or documentation). In the case
where the metric data is correct, then either the product must be improved, or the overall

quality goal is unrealistic and must be lowered.

Metric Metric Criteria Factor
Name Score Score Score
AC.1 87 e 87 }

AM.1 .85

AM.2 94 W

AM.3 98

AM.4 82 » JI P e—— 83
AM.5

AM.6 .82

AM.7 .89 7

S 89

S1.2 @)

SL.3 .97 .83 J

SL4 .29 T

SL.5 1.00

S1L.6 85

e. Effectiveness. Software quality metrics is an emerging technology. For this reason,

this method has had little field use to validate its effectiveness.

f. Applicability. This technique is applicable to a product under development, from
algorithm confirmation to verification/CPCI test and to an existing product. Software
quality measurement could possibly be applied to the remaining test phases. This is
dependent on the particular needs of the user. The metrics are primarily applicable to

high-order languages.

4-54

. -

ey s 0,

A

. e
-

P

¥ _FAh
M T

'.“'l U
. - .
LIS PSR

.. t\‘p~’ (‘ .f..f..."l' TaT 2

g. Maturity. Evaluation of software quality through metrics is very new; therefore, it is
not widely used.

h. User Training. An implementor of this technique should be familiar with software
design development and coding.

i. Costs. Emphasis on a high software quality goal can sometimes result in cost savings.
For example, using metrics to evaluate reliability would result in early detection of errors
and, therefore, cost savings. The benefits of some quality factors may not be realized
until later in the life cycle (e.g., reusability). An emphasis in reusability is a benefit to
future projects.

j. References.
(QUA 83A) (SPE 82) (SOF 83)
(QUA 83B) (SOF 80)

4.3.1.5 Input Space Partitioning

This section contains descriptions of path analysis test techniques. These techniques are
characterized by the partitioning of the input space into path domains (subsets of the
program input domain) that cause execution of the program's paths. These techniques
have been shown to be generators of high quality test data, although current technology
limits their use to programs which have a small number of input variables. These
techniques are not suitable for widespread use due to the complexity of the methodology;
however, less rigorous interpretations of the methodologies are generally used.

4.3.1.5.1 Path Analysis
Path analysis is a technique that generates test data that cause selected paths in a
program to be executed. This method presents a procedure for selecting a representative

subset of the total set of input data of a program.

a. Information Input. The input needed for this technique is the source code.

4-55

=3 ..

. e e e
PR R SN

b. Information Output. The output of this technique is a set of test data that is sensitive

to computation errors, path errors, and missing path errors.

c. Qutline of Method. The methodology of path analysis consists of five phases, outlined

as follows. See (HOW75) for a detailed discussion of the methodology.

Phase I-Analyze the program and construct descriptions of the standard classes of paths.
A given program can have an infinite number of paths through a program. Fortunately,
there are strategies that provide a theoretical basis in selecting the best possible subset
of paths. To attempt to test the paths is ineffective without a clear idea of which paths
comprise a representative set. The boundary-interior method is a strategy for choosing a
group of paths through a program to build a finite set of classes in such a way that a test
of one path from each class constitutes an intuitively complete set of tests. In this phase,
class descriptions of a program are defined using the boundary-interior method. The
complete set of class descriptions for a program can be represented in the form of a
description tree. Figure 4.3.1.5-2 contains the boundary-interior class description tree
for the program in figure 4.3.1.5-1. The leftmost path in the tree describes the class of
all paths that test the interior of the loop in the program. The other paths are boundary

tests.
I READ N READ N
2 IF N<O GOTOI0
I M«
4 IF N=0 GOTOS N=20 N=0
5M « M*®N M1 PRINT -1
6 N«N-1 /\ HALT
7 GOTOU4
8 PRINT M N=0 N=0
9 HALT M « M®N PRINT M
10 PRINT -1 N « N-1 HALT
11 HALT Kl >=0
FORIl = | TOKI
Figure 4.3.1.5-1. Factorial Program N#*0
M «M*N
N«N-1
N=0
PRINT M
HALT

Figure 4.3.1.5-2. Description Tree

4-56

. «ot. .
.. L s e w¥ ettt et
LSS VEF LS Y VRN LYY resre

PR

-

Difatl MaiCAe g Fas S il g Sudh o b e o Jus Joany ok) ———— P el aas sug N b MU T . B B s e man e
- B Pl A CERSEEAC Pt e A A e S e

Phase 1I-Construct descriptions of the sets of input data that cause the different standard
classes of paths to be followed. The predicates in a program are the condition
statements. The predicates in a path, as well as the input and computational statements
that affect the variables in the predicates, form an "implicit" description of the subset of
the input domain which causes that path to be followed. Figure 4.3.1.5-3 contains the
implicit input data description for the interior test class description in Figure 4.3.1.5-2.
The input statement "READ N is substituted by N« # 1, where #1 symbolizes a dummy

input variable.

N+ ¥

N> 0

N = 0

N«N.j

Ki> 0

FOR Il = 1 to K1
N 20
NeN-}

N=Q

Figure 4.3.1.5-3. Implicit Input Data Description

Phase [lI-Transform the implicit descriptions into equivalent partially explicit descrip-
tions. This phase uses a symbolic interpretation process that attempts to evaluate and
delete the assignment statements and FOR-loops in an implicit description. It is not
always possible to delete all of the assignment statements from an implicit description;
therefore, this phase results in the generation of partial explicit descriptions. The
generation of complete explicit descriptions is prevented by the presence of array
references and loops in implicit descriptions. Figures 4.3.1.5-4 and 4.3.1.5-5 show the
partially explicit description and the explicit descriptions, respectively.

#1>0

#l20 #1>=0

N«#-1 #1320

Kl >= 0 Kl>0

FOR Il = | TOKI (#1-1<0 V #1-1>Kl-1)
N+ #1-1Kl=0
N+N-1 Figure 4.3.1.5-5. Explicit Description

N=0

Figure 4.3.1.5-4. Partially Explicit Description

4-57

The assignment N-j}] has been evaluated and deleted and the symbolic value #! is
substituted for N in the predicates N= 0 and N # 0. The assignment N«=N - | has also
been evaluated. The symbolic value #1 - | of N cannot be substituted for occurrences of
: N in the For-loop because N is assigned a value in the loop. The assignment N<#] - |

must be retained to denote the value of N on entry to the FOR-loop.

; The loop in figure. 4.3.1.5-4 can be replaced by the predicate (N< O v N> K| -1)and S
. the assignment N<N - K. o

Phase [V-Construct explicit descriptions of subsets of input data sets for which the third
phase was unable to construct explicit descriptions. Each of the explicit and partially

= explicit descriptions generated by phase IlIl describes a set of input data. Phase IV

constructs explicit descriptions of subsets of the sets that are described by partially

explicit descriptions. Subset descriptions are constructed by traversing the FOR-loops in

partially explicit descriptions. Partially explicit subset descriptions can be constructed b;'
choosing particular values of K1 in figure 4.3.1.5-4. Figure 4.3.1.5-6 contains the subset

description corresponding to the choice of K1 = 0. Figure 4.3.1.5-6 is evaluated to

LR Iv..v_.'.
'A‘A‘A'.m PN .

produce explicit subset descriptions (figure 4.3.1.5-7.

i #1>=0
- #1120 #1>=0
b N #1 -1 #1120
:‘: N = o #l - l = O
=
I Figure 4.3.1.5-6. Partially Explicit Subset Description Figure 4.3.1.5-7. Explicit Subset Description
. Phase V-Generate the input values that satisfy explicit descriptions. An integrated
[:' collection of inequality solution techniques are applied to the complete descriptions to
generate test cases. These techniques are applied to both the explicit descriptions, which
] are generated by phase Ill of the methodology, and to the subset descriptions generated by
,f.j phase IV. The explicit subset description in figure 4.3.1.5-7 can be easily solved using a
:- method for linear systems in one variable (figure 4.3.1.5-8).
»
##l 2 0

40 #1 >0
5 #lo=
- thus, #1 = |
P Figure 4.3.1.5-8. Explicit Subset Description Solution
'C:
v 4-58

...............

e
RS
- _."_h\.- -
e 'Jl" A !‘- D

.

Dt)
B B

d. Example. An example of this technique is given in the preceding section.

e. Effectiveness. This technique detects computation, path, and missing path errors.
Only phase I and II have been implemented and has shown to be effective. However,
: generation of test data cannot be guaranteed for classes of paths containing branch
predicates that involve subroutines, functions, or nonlinear expressions in several vari-
ables.

f. Applicability. Path analysis is applicable during unit, module, and integration test
phase to high-order languages.

8. Maturity. This technique is not highly mature, because it is still in the early stages of

its development.

h. User Training. A firm understanding of the underlying methodology is necessary to
implement this technique.

i. Costs. Human effort is the main cost factor of this technique.

jo References.
- (HOW 75)

4.3.1.5.2 Domain Testing

Domain testing detects errors that occur when a specific input follows the wrong path
because of an error in the control flow of the program. The strategy is based on a
geometrical analysis of the input domain space and utilizes the fact that points on or near

the border of the input space are most sensitive to domain errors.

G
PN

a. Information Inputs. The program code and minimum-maximum constraints imposed on

0
‘e

the input variables are the inputs needed. In -nost applications, the minimum-maximum

range of the input values is known.

. KL
lata e b

s
"

. N
Ao dl s

9\

LR R
PO
LI

P

4-59

B
a e

- - PR
RSRSASENA
AR

T Y.

b. Information Outputs. This technique detects errors in condition statements (i.e.,

incorrect relational operator or incorrect operand).

I c. Outline of Method. An input space is n-dimensional where n is the number of input

variables. The input space structure is a geometrical representation of the input space.
Given the inputs and the min-max constraints imposed on the input variables, an input
| space structure can be constructed. This structure gives a pictorial representation of the

domains of the input variables.

Test points are generated for each border segment identified. Border segments are
sections of the input space that are delimited by the predicates in the program. These
test points determine if both the relational operator and the position of the border are

correct.

Those test points that are sensitive to domain testing errors are identified by the

following process—

. Choose a predicate in the program that may be in error.
. Determine the assumed correct predicate.
. Compare the outcome of the program with the original predicate with the outcome

of the program with assumed correct predicate.
. The test points that result in unequal outcomes are the test points that are sensitive

to domain errors.

Fortunately, the number of required test points grows linearly with both the dimensional-
ity of the input space and the number of path predicates. A detailed description of the
domain testing strategy methodology can be found in (WHI80).

Given the inputs listed above, an input structure can be drawn. This structure is a
graphical perspective of the relationship between the input domain and the control paths
through a program. The input-domain is a set of input data points satisfying a path
condition.

d. Example. The inclusion of an example of domain testing is beyond the scope of this
guidebook due to the complexity of the methodology. See WHI&0 for a detailed example.

L aa o s B e gE . B raengaraara s

4-60

e. Effectiveness. Domain testing is effective in detecting incorrect relational operators

and incorrect operands in condition statements.

f. Applicability. This technique is applicable during the unit or module test phase, and
the program should be written in an Algol or Pascal-like language, such that the control

structures should be simple and concise.

Arrays, subroutines, and functions are programming language features that are not e
presently implementable. Further research is needed to determine whether these features BIRIRRNR _:

pose any fundamental limit to the domain testing strategy.

g. Maturity. Domain testing strategy is still in the developmental or experimental stages . e '

and is not widely used for this reason.

h. User Training. There is no specific knowledge needed to do domain testing other than
familiarity with the methodology. l °

i. Costs. The primary costs of the domain testing strategy involves time spent examining
and analyzing the test cases. This process could be automated by using some form of an
input-output specification.

j- References.
(DEM 83)
(WHI 80)

4.3.1.5.3 Partition Analysis

Partition analysis uses information from both the specification and the implementation to
test a procedure. Symbolic evaluation techniques are used to partition the set of input
data into subdomains so that the elements of each subdomain are treated uniformly by the
specification and the implementation. The information attained from each subdomain is
used to guide in generating test data and also verifies consistency between the

specification and the implementation.

a. Information Inputs. The necessary inputs are the program specifications written in a

formal specification language and the implementation (code).

b. Information Outputs. The outputs constitute a set of test data and a measure of the

consistency of the implementation with the specification.

c. Outline of Method. Partition analysis is divided into two types of testing: partition

analysis verification, which tests for consistency between the specification and the
implementation, and partition analysis testing, which generates test data. An introduc-

tion to the terminology is presented to explain the methodology of this testing technique.

The domain of a procedure (or module) can be partitioned into subdomains by examining
the specification and the implementation. Symbolic evaluation can be applied to the
specification to create subdomains, which are called subspecification (subspec) domains.
Each path through the implementation comprises a subdomain called a path domain. As a
result, a partition of the whole procedure can be constructed by overlaying these two sets

of subdomains. The resulting subdomains are called procedure subdomains.

Partition Analysis Verification. This test provides a means to examine the consistency
between the specification and the implementation. There are three properties associated
with consistency - compatibility, equivalence, and isomorphism. The specification and
the implementation are consistent only if these three properties are shown to be true.
Compatibility is shown if the specification and the implementation demonstrate uniform-
ity of declarations of parameters and global variables. The input and output domain of
the implementation must agree with that of the specification. Equivalence is shown when
the subspec domains are equal to the path domains. Isomorphism is shown if there is a

one-to-one correspondence between the subspec domains and the path domains.

Partition Analysis Testing. This technique provides a method of generating test data that
are sensitive to computation and domain errors. An examination of the representations of
the subspec domains and path domains will expose computation errors. To detect domain

errors, an examination of the representations of procedure subdomains is required.

For more detailed information on this methodology, see (RIC 81).

4-62

PP g,

T ' e N T

d. Example. An example of partition analysis is beyond the scope of the guidebook due to
the complex nature of the methodology. RIC8! provides an excellent and extensive
example.

e. Effectiveness. Partition analysis can detect missing path errors, incorrect relational
operators in condition statements, domain errors, and computational errors. Initial

experimentation with this technique has provided positive results; however, more experi-

mentation is needed to demonstrate the reliability of this method.

f. Applicability. This technique is applicable during unit and module test phases. A

formal specification language must be used.

e
8- Maturity. Partition analysis is not highly mature. It is still in the developmental and S
research stage. Additional testing is necessary for this technique to become widely used. ,‘:
h. User Training. Familiarity with symbolic expression of a procedure will prove helpful. 4 ‘- ; s

i. Cost. Human effort is the main cost involved in using this technique.

j» References.
(RIC81)

4.3.1.6 Data-Flow Guided Testing

Data-flow guided testing is a method for obtaining structural information about programs
that has found wide applicability in compiler design and optimization. Control flow

information about a program is then used to construct test sets for the paths to be tested.
This specialized technique is not to be confused with data flow analysis (sec. 4.3.1.2), a » o
technique that detects errors that can be represented by particular sequences of events in . .

a program's execution (i.e., reading a file before it is opened).

a. Information Input. A control flow graph representation of the program is the ..

necessary input for this techique.

4-63

At

- o«
At s tate .,
PO LA AT DAL AT AL

T R TR ——— —— ey N R TN TN N Ty e——p— r—" — - n - -

b. Information Qutput. Data-flow guided testing will provide information concerning

code optimization as follows.

Available Expressions. An expression X opr Y (where, opr is an operator) is "available" at) L

a point p in a flow graph, if every point from the initial node to p evaluates X opr Y, and

after the last such evaluation prior to reaching p, there are no subsequent assignments to
X or Y. This information enables the elimination of redundant computation of some

expressions within each node. ' L4

Live Variables. Given a point p in a flow graph, the identification of which variables are

"live" at that point, that is, what variables given before this point are used after this

point, provides useful information. An important use of this information is evident when L e
object code is generated. After a value is computed in a register, and presumably used ‘
within a block, it is not necessary to store that value if it is dead at the end of the block.
Also, if all registers are full and another register is needed, using a register with a dead

i.r value is ideal since that value does not have to be stored. ' ®

Reaching Definitions. Given a definition of a variable, it is desirable to know what uses

might be affected by the particular definition. This information can detect potentially

undefined names by introducing a dummy definition of each name A preceding the initial t... @
node of the flow graph, and seeing whether the dummy definition of A reaches any block T

o that has a use of A and does not define A before that use.

“ Very Busy Variables. An expression B opr C is very busy at point p if along every path ! o
from p we come to a computation of B opr C before any definition of B or C. If Bopr C is .
very busy at p, we can compute it at p, even though it may not be needed there, by

introducing the statement T:=B opr C. Then replace all computations A:=B opr C reach-

able from p by A:=T. N S
c. Outline of Method. There are two main methods to solving data flow problems: the
interval approach (ALL76) and the iterative method (HEC73, KIL73, SCH73). The interval

approach collects relevant information by partitioning the program flow graph into ' ‘ .

subgraphs called intervals, replacing each interval by a single node containing information

about the data items used, defined, and preserved within that interval. The iterative

approach propagates data flow information in a simple iterative manner until all the

4-64

et B T SR L P S R S L
e . o P RS

ST WA A Ve Tl e - [ORERLRN e LI A AL
PR LA PG S AP LS S UL AP T S et e et Bl ol B ol et St om Ps Va Tom ' alata’aa’a'ntautat

R e M A nen 4 T —y—

required information is collected. Detail information on these two approaches to data-
flow guided testing can be found in KEN76.

d. Example. Examples of solutions to data-flow guided testing problems can be found in
HEC75 and ALL76.

e. Effectiveness. This technique has proven to be effective in detecting data flow
problems. Examples of these types of problems are: available expressions (COC70,
ULL73), live variables (KEN71), reaching definitions (CON70), and very busy variables
(SCH73).

f. Applicability. Data-flow guided testing is generally used to assist in the effort of
optimizing program code. As a test technique, this method may be utilized during

algorithm confirmation, design verification, unit test and module test.

g. Maturity. This technique is highly mature. It is primarily used as a code optimization

method.

h. User Training. Familiarity with certain concepts and constructs of graph theory must

be acquired in order to implement and understand this technique.
i. Costs. The principal cost associated with this technique involves human effort.
Fortunately, a part of this technique has been automated (ALL76), thus human effort can

be reduced.

j» References.

(AHO 77) (CON 70) (KEN 76) (ULL 73)
(ALL 76) (HEC 73) (KIL 73)
(COC 70) (HEC 75) (SCH 73)

§.3.2 Dynamic Analysis Techniques

4.3.2.1 Instrumentation-Based Testing

Instrumentation-based testing techniques involve inserting statements or routines that

4-65

-,

’
ST e
.. &
- C e
I B
ST
e
r . e 1
Rt
..‘_-
._’4

R sl S R e T) = bl A S et ClMuCive 4 % e Sne B oy T

record properties of the executing program, but do not atfect the functional behavior of
the program. This section includes technique descriptions of path and structural analysis,
performance measurement techniques, assertion testing, and interactive test and debug

aids.

4.3.2.1.1 Path and Structural Analysis

Path and structural analysis produces certain analytic information consisting of a listing
of the segments of the program undergoing analysis, and the number of times each
segment is executed when the program is executed. A segment is a portion of the
program that may consist of statements, branches, complete execution paths, or

paragraphs as in Cobol.

The goal of path and structural analysis is to increase the amount of code tested. Most
times it is impossible to test all the paths or combinations of branches in a large program.
It is possible however, to test all branches. For effective testing, all branches and as

many paths as possible should be tested.

Instrumentation tools are used to determine how much coverage is achieved in a test run.
These tools can also provide timing data, execution traces, and other information.
However, the tester himself must formulate input data and decide whether the program

has run correctly for each test.

a. Information Inputs. The input to this technique is the source program and an initial set hate

of program test data. In addition, sophisticated coverage analyzers may require input

parameters or commands that indicate which of several alternative coverage measures

are to be used.

b. Information Outputs. At a minimum, the outputs are a listing of the code that is being

analyzed and the number of times a segment is executed when the program is executed.

In addition to covel ige information, this analysis may also record and print variable range
and subroutine call information. The minimum and maximum values assumed by each
variable in a program, the minimum and maximum number of times that loops are iterated

during the executions of a loop, and a record of each subroutine call may be reported.

c. Qutline of Method. Typically, this analysis consists of two parts—a preprocessor, that

inserts code that collects the coverage information during execution. This is called
instrumenting the code. The second part is a postprocessor, that contains the capability
to reduce data resulting from execution of the instrumented code and prepare reports and
test results.

The code that collects coverage data can collect other information as well. The nature of
this information depends on the tool used and the level at which the code is instrumented.
If probes are inserted after every statement in the program, then the entire history of the
execution of a program can be recorded. Of course, instrumenting at the statement level
will incur significant computer overhead. To determine branch coverage, it is only

necessary to insert probes at every decision statement.

Structural analysis involves the following steps—

. Execution of the preprocessor (input equals the source program to be analyzed) to
produce instrumented source code. This step results in the insertion of probes in the
program appropriate for test coverage analysis requirements. The probes call
special data collection routines or update matrices that record the execution profile

of the program.

. Execution of the compiler (input equals the instrumented source code) to produce
object code, and the linkage loader to produce the executable program complete

with data collection routines.

. Execution of the program, includes execution of probes and data collection routines.
. Execution of the postprocessor to analyze the collected data and to print the test
results.

Three levels of structural analysis are possible: statement, branch, and path. Statement
analysis, which is least rigorous may be fulfilled 100% without executing all possible
program branches. Path analysis on the other hand, requires executing all possible paths
in the program, which in some cases may not be achievable. Branch analysis is a usually
preferred approach.

4-67

. AL
. et et e
1 N T C o

el
o o g

‘. l'l . Lf
e e s .
PP IR W W)

WV SRR Aadi-adiliny s AR S . e N ———— T— > ~ -

-
N

[P

There is no automated mechanism for error detection in structural testing. The user must
recognize errors by [ooking at the output of the program. An obvious way to provide e
automatic assistance in error detection is to use executable assertions. Assertions are - 2 .
better than the execution traces produced by instrumentation tools for two reasons.
First, assertions express relationships between variables rather than just reporting their
values—in this way error conditions can be checked automatically. Second, execution &

traces tend to produce large amounts of output, which is wasteful of cornputer resources P

and annoying to the user.

) When a user finds errors in his program during the course of testing and makes code
h changes to correct them, the new version of the program must be run through the D .l -

instrumentation tool again.

d. Example. An example of test coverage analysis is given below.

%' Application. A quicksort program was constructed which contains a branch to a separate - A
part of the program code that carries out an insertion sort. The quicksort part of the : ,
code branches to the insertion sort whenever the size of the original list to be sorted or
a section of the original list is below some threshold value. Insertion sorts are more ._____________,

2 o

effective than quicksorts for small lists and sections of lists because of the smaller

constants in their execution time formulae.

Error. The correct threshold value is 11. Due to a typographical error, the branch to the e

insertion sort is made whenever the length of the original list, or the section of the list

currently being processed is less than or equal to one.

Error discovery. Parts of the insertion sort code are not executed unless the list or list

section being sorted is of length greater than one. Examination of the output will reveal

that parts of the program are never executed, regardless of the program tests which are

used. This will alert and draw the attention of the programmer to the presence of the

error. It is interesting to note that this error is not discoverable by the examination of

test output data alone since the program will still correctly sort lists.

e. Effectiveness. Structural analysis and use of an instrumentation tool can provide the

tester with the following information:

O hat st T T T T Y v Ty e T Y - s

- Let. . -t

. It can reveal untested parts of a program, so that new test efforts can be
concentrated there.

l . Data on the frequency of execution of parts of a program, and the time required to
: execute them, can be tabulated. This information can be used to make the program
more efficient through optimization techniques.

l . The range of values assumed by a variable (high, low, average, first, last) can be

recorded and checked for reasonableness.

. A trace of what has occurred at each statement in a section of code can be printed.
5 This can be useful when debugging.

. The data flow patterns of variables can be analyzed from the execution trace file

(HUA79). In this way errors and anomalies in the use of subscripted variables can be

'! detected.
. The degree to which the test cases exercise the structure of the program
j:'_ (traditional testing methods typically exercise 30% to 80% of a program).
-
2
' Structural analysis is effective in detecting computation errors, logic errors, data
::: handling errors, and data output errors. This technique can help in the detection of
N omitted program logic, and it can assist in the detection of errors which only occur if a
I certain combination of segments is executed.
-: Percentage of errors detected in various programs by structural analysis range from 33%
: to 92% (HOW78A, HOWS80C, MAN74, GAN79, THA76). The combination of structural and
> functional testing has proven to be effective (THA76).
f::f This technique has been demonstrated as effective on both host and target systems.
- Refer to CAM81 for details on implementation and use in a target environment.
y
5 f. Applicability. This analysis introduces a concept called structure-driven testing.
- Traditionally, testing has been requirements driven. That is, test cases are developed
.':: largely to demonstrate that a program satisfies the functional requirements imposed on it.
).

. 4-69

1

o® .
a0

.

e € s
.
cat

e %2 f0 s
ot .

T
.
Wt

Functional or requirement-driven testing should not be superseded by the use of this

technique but should be used in conjunction with this technique.

Structural analysis can be used with programs of any type of application. The timing
information provided by instrumentation tools is useful in improving the efficiency of

time-critical routines.

Structural analysis of large and complex prograins is difficult, but these are the prograins
that most need thorough test coverage. This testing technique has been shown to be
effective early in the development life cycle, specifically during unit and module testing

phases.

g. Maturity. Path and structural analysis is a highly mature approach to testing a
program. Many instrumentation tools have been developed in the last ten years. Tools

are available for most programming languages and computers.

h. User Training. There are no special training requirements for the usage of this

technique. The use of pre- and post-processors are similar to the use of a compiler.

i. Costs. The most expensive part of structural analysis is the human resources needed to
develop test data to achieve a required coverage level and examine output for errors.
More experience with structural analysis is needed before good estimates of analysis time
and cost can be developed. Available data suggest that using structural analysis to debug

programs requires 0.5 to 2.0 person-days per error found.

There is a good deal of data available on the computer overhead of instrumentation tools.
The amount of overhead depends on several factors, including the level of instrumentation
and the options selected. Generally, instrumentation tools require—

. A 20 - 100% increase in program size.

. A 2 - 50% increase in execution time.

There are numerous instrumentation tools available from Government and commercial

sources. Most of the commercial tools sell for less than $10,000.

4-70

[3 |

'v'v‘ Py e o=
. -

T T . TeT,Ty
arLt.tt LR

.T" '.'.

* .
[AEREY

It is hard to estimate the total costs of structural analysis, because no one knows how to
estimate the analysis time or number of test runs required. A user of structural analysis
on a large software project claimed a significant cost saving over traditional testing

methods.

j- References.

(CAM 81) (HUA 75) (GAN 80) (HOWS0C)
(GLA 76) (HUA 79) (MEL 79) (MAN 74)

(HEI 82) (STU 73) (MEL 81) (GAN 79)

(HOW 80A) (THA 76) (HOW 78A)

4.3.2.1.2 Performance Measurement.

There are two types of software performance measurement techniques: execution time
and resource analysis and algorithm complexity analysis. These two techniques differ in
ease of use and maturity. The former technique is a more practical approach to the

measurement of resource usage, whereas the latter technique is a more rigorous approach.

4.3.2.1.2.1 Execution Time and Resource Analysis.

Execution time and resource analysis involves monitoring the execution of a program in
order to locate and identify possible areas of inefficiency in the program. Execution data
is obtained via a random sampling technique used while the program executes in its
normal environment or by the insertion of probes into the program. The probes consist of
calls to a monitor that records execution information such as CPU and 1/O time. At the
end of execution, reports are generated that summarize the resource usage of the

program.

a. Information Input. This technique requires as input the program source code and any

data necessary for the program to execute.

b. Information Output. The output produced by this technique are reports that show

either by statement, groups of statements, and/or module the execution time distribution
characteristics and resource usages. For example, information showing per module the

number of entries to the module, cumulative execution time, mean execution time per

4-71

—— e e T T T o o e o T T T S W - e w W ——— =y = o

- L‘,' R -

entry and the percent execution time of the module with respect to the total program

execution time.

Other types of reports are as follows—
. A summary of all the sample counts made during data extraction, e.g., the number
of samples taken where the program was executing instructions, waiting for the

completion of an I/O event, or otherwise blocked from execution.
. A summary of the activity of each load module.

E . An instruction location graph that gives the percentage of time spent for each group

of instructions partitioned in memory.

. A program timeline that traces the path of control through time.

. A control passing summary that gives the number of times control is passed from

one module to another.

. A wait profile showing the number of waits encountered for each group of

instructions.

. A paging activity profile that displays pages-in and pages-out for each group of

instructions.

. A performance profile showing the amount of CPU, execution time, primary and

secondary storage utilized.

c. Qutline of Method. Execution time and resource analysis typically consist of two

processing units. The first unit runs the program being monitored and collects data

concerning the execution characteristics of the program. The second unit reads the

collected data and generates reports from it. Two variations in technique implementation

are described below.

METHOD 1: This method involves monitoring a program by determining its status at

periodic intervals. The period between samples is usually controlied through an elapsed

interval timing facility of the operating system. Samples are taken from the entire
address range addressable by the executing task. Each sample may contain an indication
of the status of the program, the load module in which the activity was detected, and the
absolute location of the instruction being executed. Small sample intervals increase
sampling accuracy but result in a corresponding increase in the overhead required by the
CPU.

Memory utilization of a user's program can be defined as how well the program uses the
memory that has been allocated to the program. In general, poor usage of primary
memory occurs when the program requests instructions or data that are not currently
resident; this is called a "page fault" because a new "page" of information must be
requested from secondary storage. Memory utilization information is obtained by
accumulating ordered pairs of page fault counts and program counters. Since the program
counter maps into a machine level representation of the program code, only a crude
measure of statement locality in the high-level code can be achieved. This information
can be displayed using a histogram, where each histogram bar is generated beside a

grouping of program statements, showing where poor memory usage is occuring.

The statistics gathered by the data extraction unit is collected and summarized in reports
generated by the data analysis unit. References to program locations in these reports will
be in terms of absolute addresses. However, in order to relate the absolute locations to
source statements in the program, the reports also provide a means to locate in a
compiler listing the source statement that corresponds to that instruction. In this way,
sources of waits and program locations that use significant amounts of CPU time can be
identified directly in the source code; any performance improvements to the program will

occur at these identified statements,

METHOD 2: This method involves the insertion of probes (program statements) into the
program at various locations of interest. Information, such as CPU time necessary to
execute a sequence of statements may be determined in one of two ways. In the first
way, the execution of a probe results in a call to a data collection routine which records
the CPU clock time at that instant. The execution of a second probe will result in a
second call to the data collection routine. A subtraction of the first CPU time from the
second will yield the net CPU time utilized. In the second way, the probes are used to

record the execution of program statements. Associated with each statement is a

machine dependent estimate of the time required to execute the statement. The
execution time estimate is multiplied by the statement execution count to give an
estimate of the total time spent executing the statements. This is done for all statements
in a program. Reports showing execution time breakdowns by statement, module,

statement type, etc. can be produced.

d. Example. Three examples of this technique are given as follows.

Application. A program that solves a set of simultaneous equations is constructed. The
program first generates a set of coefficients and a right hand side for the system being

solved. It then proceeds to solve the system and output the solution.

Error. In the set of calculations required to solve the system, a row of coefficients is

divided by a constant and then subtracted from another row of coefficients. The divisions
are performed within a nested DO-loop but should be moved outside the innermost loop, as

the dividend and divisors within the loop do not change.

Error discovery. The performance of the program is evaluated through the use of a

software monitor. Examination of the output reveals that the program spends almost 85%
of its time in a particular ad-ress range. Further analysis shows that 16.65% of all CPU
time is used by a single instruction. A compiler listing of the program is used to locate
the source statement that generated this instruction, which is found to be the statement
containing the division instruction. Once the location of the inefficiency is discovered, it

is left to the programmer to determine whether and how the code can be optimized.

Application. A particular module in a real time, embedded computer system is required
to perform its function within a specific time period. If not, a critical time dependent

activity cannot be performed resulting in the loss of the entire system.

Error. The module in question contained an error which involved performing unnecessary
comparisons during a table look-up function although the proper table entry was always

found.

Error discovery. The problem was discovered during system testing using an execution

time analyzer which clearly indicated that the offending module was not able to meet its

performance requirements. The specific error was discovered on further examination of

the module.

The following example demonstrates the usage of resource utilization information.

Application. The current work assignment requires that code must be written in Fortran.

The application requires the usage of a two-dimensional array for data representation.

Error. A programmer proceeds to program this application as he would in his most
familiar programming language C. However, this particular Fortran implementation

stores data in matrices by columns, whereas, C implementations store data by rows.

Error Discovery. A histogram of the memory utilization reveals that a huge amount of
page faulting occurs in a loop where the two-dimensional array is manipulated. The
programmer reviews his code, and modifies his array indices accordingly, so that the left

index varijes fastest. As a result columns are examined in groups, not rows.

e. Effectiveness. Execution time and resource analysis is a valuable technique in
identifying performance problems in a program. The majority of the execution time spent
by a program is spent executing a very small percentage of the code. Knowledge of the
location of execution time critical code is helpful in optimizing a program in order to

satisfy performance requirements and/or reduce costs.

f. Applicability. The value of the technique lies primarily in its use as a performance
requirements validation tool. In order to be used to formally validate performance
requirements, it is necessary for the performance requirements to have been clearly
stated and associated with specific functional requirements. Moreover, the system should
be designed so that the functional requirements can be traced to specific system modules.
This technique can be applied to any kind of program in any programming language. It is
applicable during unit test through verification/CPCI test phase.

g. Maturity. Execution time and resource analysis is widely used and it is highly mature.

h. User Training. There are no special learning requirements for the use of this

technique. However, in order to use the technique effectively, the input parameters must

4-75

.
- - - -

."'. A N A A P R R ‘ -

afa L‘A‘,;‘,L‘%LLALA“}JA L‘L.L l-l_

]
]
<

SR |
1

AR RN
et .

Ty AIMESMCaSLIY I inse St e Jarane s e o SR SR ERE AR

L A I BN PN] - PR

be carefully selected in determining the most relevant reports to be generated. Once the
areas of a program which are most inefficient have been identified, it requires skill to

modify the program to improve its performance.

i. Costs. The largest cost in using this technique is that incurred by the CPU to extract
the data during execution. In one implementation, extraction of data resulted in an
increase of user program CPU time by 1| percent to 50 percent (MAR78). Storage
requirements also increase in order to provide memory for diagnostic tables and the

necessary program modules of the tool.

}. References.
(MAR 78) (HEI 82) (GAN 80)
(RAM 75) (WES 79) (MEL 81)

4.3.2.1.2.2 Algorithm Complexity Analysis.

Two phases of algorithm complexity analysis can be distinguished: a priori analysis and a
posteriori testing. In a priori analysis, a function (of some relevant parameters) is devised
that bounds the algorithm's use of time and space to compute an acceptable solution. The
analysis assumes a model of computation such as a Turing machine, RAM (random access
machine), general-purpose machine, etc. Two general kinds of problems are usually
treated (1) analysis of a particular algorithm and (2) analysis of a class of algorithms. In a
posteriori testing, actual statistics are collected about the algorithms consumption of

time and space, while it is executing.

a. Information Input. The specification of the algorithm and the source code representing

the algorithm are necessary inputs.

b. Information Qutput. The outputs of a priori analysis follow:

. Confidence of algorithms validity.

. Upper and lower computational bounds.
. Prediction of space usage.

. Assessment of optimality.

The output of a posteriori testing is a performance profile.

4-76

c. Outline of Method. The methodology of a priori analysis and a posteriori testing is

outlined below.

A priori analysis. Algorithms are analyzed with the intention of improving them, if
possible and for choosing among several available algorithms. The following criteria may

be used:

. Correctness.

. Amount of work done.
. Amount of space used.

. Simplicity.

. Optimality.

L I

Correctness. There are three major steps involved in establishing the correctness of an S
algorithm. They are as follows. '-_-j;'l‘;ﬁ ‘_f::
- Understand that an algorithm is correct if when given a valid input it computes for a y : _'.i
finite amount of time and produces the right answer. P e -

. Verify that the mathematical properties of the method and/or formulas used by the

algorithm are correct.

. Verify by mathematical argument that the instructions of the algorithm do produce

the right answer and do terminate.

Amount of work done. A priori analysis ignores all of the factors which are machine or [W”M“':«
programming language dependent and concentrates on determining the order of magnitude B
of the frequency of execution of statements. For denoting the upper bound on an

algorithm, the O-notation is used.

Definition, f(n) = O(g(n)) if and only if there exists two positive constants C and n, such
that f(n)<C g(n) for all nzn..

The most common computing times for algorithms—

0O(1)< Ollogn)< O(n)< Olnlogn)< O(n?) < O(n?) and O(2").

. .
PRSI .
S SN e “ .
. AT T S T T T
PR AP W WA BT Y W v W VAT DR W O

*

JTTTOT TS "T.'V:‘-"f

p— T ——
. . L

.
L '}
o'

ey

e e -p
v B ARASAIMG .
L] . St e

'
D RN

>
v
v at

O(1) means that the number of executions of basic operations is fixed and hence the total
time is bounded by a constant. The first six orders of magnitude are bounded by a
polynomial. However, there is no integer such that n™ bounds 2". An algorithm whose
computing time has this property is said to require exponential time. There are notations
for lower bounds and asymptotic bounds (HOA64). The term, "complexity" is the formal

term for the amount of work done, measured by some complexity (or cost) measure.

In general, the amount of work done by an algorithm depends on the size of input. In some

cases, the number of operations may depend on the particular input. Some examples of

size are:
Problem Size of input
1. Find X in a list of names. Number of names in the list
2. Multiply two matrices Dimensions of the matrices
3. Solve a system of linear equations Number of equations and solution
vectors

To handle the situation of the input affecting the performance of an algorithm, two
approaches (average and worst-case analysis) are used. The average approach assumes a
distribution of inputs and then calculates the number of operations performed for each
type of input in the distribution and then computes a weighted average. The worst-case
approach calculates the maximum number of basic operations performed on any input of a

fixed size.

Amount of Space Used. The number of memory cells used by a program, like the number
of seconds required to execute a program, depends on the particular implementation.
However, some conclusions about space usage can be made by examining an algorithm. A
program will require storage space for the instructions, the constants, and variables used
by the program, and the input data. It may also use some work space for manipulating the
data and storing information needed to carry out its computations. The input data itself
may be representable in several forms, some which require more space than others. If the
input data has one natural form, for example, an array of numbers or a matrix, then we
analyze the extra space used, aside from the program and the input. If the amount of
extra space is constant with respect to the input size, the algorithm is said to work "in

place".

N I
AN

N AP
RS .

Simplicity. It is often, though not always, the case that the simplest and most
straightforward way of solving a problem is not the most efficient. Yet simplicity in an
algorithm is a desirable feature. It may make verifying the correctness of the algorithm
easier, and it makes writing, debugging and modifying a program for the algorithm easier.)
The time needed to produce a debugged program should be considered when choosing an o
algorithm, but if the program is to be used very often, its efficiency will probably be the

determining factor in the choice.

-y

- Optimality. Two tasks must be carried out to determine how much work is necessary and

{ sufficient to solve a problem. They are as follows— U
[. Devise what seems to be an efficient algorithm; call it A. Analyze A and find a L 1
E function g such that for inputs of size n,, A does at most g(n) basic operations. 4 ‘ . 4‘
» A

E . For some function f, prove a theorem that for any algorithm in the class under
[consideration, there is some input of size n for which the algorithm must perform at]
k least f(n) basic operations. [f the functions g and { are equal, then the algorithm A i _‘ ~44
L. is optimal. .
2

P

r A posteriori testing. Once an algorithm has been analyzed, the next step is usually to

confirm the analysis. The confirmation process consists first of devising a program for
the algorithm on a particular computer. After the program is operational, the next step is
producing a "performance profile", that is determining the precise amounts of time and
storage the program will consume. To determine time consumption, the computer clock is

used. Several data sets of varying size are executed and a performance profile is

developed and compared with the predicted curve.

A second way to use the computer's timing capability is to take two programs for

&
é’ performing the same task whose orders of magnitude are identical and compare them as
they process data. The resulting times will show which, if any, program is faster.
Changes to one program which do not alter the order of magnitude but which purport to

speed up the program can also be tested in this way.

d. Example. QUICKSORT is a recursive sorting algorithm (HOR78). Roughly speaking,

N it rearranges the keys and splits the file into two subsections, or subfiles, such that all

.. keys in the first section are smaller than all keys in the second section. Then

et T P T TR) - . . ot
Po— PEPOR S0 Y PIRPE IR Gl i Wl Yl s il Sl SIS CE N UL N

QUICKSORT sorts the two subfiles recursively (i.e., by the same method), with the result
that the entire file is sorted.

Let A be the array of keys and let m and n be the indices of the first and last entries,
respectively, in the subfile that QUICKSORT is currently sorting. Initially m = 1 and
n = k. The PARTITION algorithm chooses a key K from the subfile and rearranges the
entries, finding an integer j such that for m< i< j, A()) € K; A(j) = K; and for j < i € n,

A(D)2K. K is then in its correct position and is ignored in the subsequent sorting.

QUICKSORT can be described by the following recursive algorithm.

QUICKSORT (A,m,n)

b if mgn then do PARTITION (A,m,n,i,j)

’ QUICKSORT (A,m,j)
QUICKSORT (A,i,n)

end

The PARTITION routine may choose as K any key in the file between A(m) and A(n); for
simplicity, let K = A(m). An efficient partitioning algorithm uses two pointers, i and j,
initialized to m and n+l, respectively, and begins by copying K elsewhere so that the
position A(i) is available for some other entry. The location A(i) is filled by decrementing
j until A(j) €K, and then copying A(j) into A(i). Now A(j) is filled by incrementing i until
A(i) 2 K, and then copying A(i) into A(j). This procedure continues until the values of i
and j meet; then K is put in the last place. Observe that PARTITION compares each key
except the original in A(m) to K, so it does n-m comparisons. See (HOAG61) for further

details.

Worst Case Analysis. 1f when PARTITION is executed, A(m) is the largest key in the
current subfile (that is, A(m) 2 A(i) for m € i € n), then PARTITION will move it to the
bottom to position A(n) and partition the file into one section with n-m entries (all but
the bottom one) and one section with no entries. All that has been accomplished is
moving the maximum entry to the bottom. Similarly, if the smallest entry in the file is in
position A(m), PARTITION will simply separate it from the rest of the list, leaving n-m
items still to be sorted. Thus if the input is arranged so that each time PARTITION is

executed, A(m) is the largest (or the smallest) entry in the section being sorted, then let

............

p = n-m+l, the number of keys in the unsorted section, then the number of comparisons

done is:

k L
T (p-)= kik-1) »
p=2 2z el

Average Behavior Analysis. If a sorting algorithm removes at most one inversion from
the permutation of the keys after each comparison, then it must do at least (n2 -n)/4

N PR

comparisons on the average. QUICKSORT, however, does not have this restriction. The
: PARTITION algorithm can move keys across a large section of the entire file, eliminating
» up to n-2 inversions at one time. QUICKSORT deserves its name because of its average

behavior.Consider a situation in which QUICKSORT v rks quite well. Suppose that each Co
» e
To PR

time PARTITION is executed, it splits the file into two roughly equal subfiles.

simplify the computation, assume that n = 2P -1 for some p. The number of comparisons
done by QUICKSORT on a file with n entries under these assumptions is described by the

recurrence relation: SRR

R(p) =2 -2+2R (p-1)
R(1) =0.

The first two terms in R(p), 2P -2, are n-1, the number of comparisons done by

PARTITION the first time. Tihe second term is the number of comparisons done by
QUICKSORT to sort the two subfiles, each of which has (n-1)/2, or Zp'l -1, entries.
Expand the recurrence relation to get

R(p) =2P -2+ 2R(p-1) = 2P -2 + 227! 2) + 4 R(p-2)
=2P-2+2P7 -4+ 2P 3+ 8 R(p-3)

p-! . p-1 .
Rp) =3 @P-2Y=(-12P- % 2
i=1 i=1

= (p-l)Zp (2P -2) = logn (n+1) -n+l.

Thus if A(m) were close to the median each time the file is split, the number of
comparisons done by QUICKSORT would be of the order (nlogn). If all permutations of

the input data are assumed equally likely, then QUICKSORT does approximately 2nlogn

comparisons.

Space Usage. At first glance it may seem that QUICKSORT is an in-place sort. It is not.
While the algorithm is working on one subfile, the beginning and ending indexes (call them
the borders) of all the other subfiles yet to be sorted must be saved on a stack, and the

size of the stack depends on the number of sublists into which the file will be split. This,

of course, depends on n. In the worst case, PARTITION may split off one entry at a time

in such a way that n pairs of borders are stored on the stack. Thus the amount of space

. used by the stack is proportional to n.

n 1000 2600 3000 4000 5000
MERGESORT 500 1050 1650 2250 2900
QUICKSORT 400 850 1300 1800 2300

(Time is in milliseconds)

Pl e gt

Testing. The results of comparing QUICKSORT and MERGESORT were reported in

{(HOR78) and are summarized above.

e. Effectiveness. Algorithm analysis has hecome an important part of computer science.
The only issue that limits its effectiveness is that a particular analysis depends on a
particular model of computation. If the assumptions of the model are inappropriate, then

the analysis suffers.

This technique examines algorithms with the intention of improving them and also
provides a means to examine the nature of algorithms (i.e., correctness, amount of work

done, amount of space used, simplicity and optimality).

f. Applicability. This technique is applicable during the algorithm confirmation phase
through unit test, and can be limited by size of application since the analysis can be
lengthy. This technique is most applicable to numerical applications because many of

these types of algorithms have been analyzed.

g. Maturity. Algorithm analysis requires highly experienced people with specialized

knowledge to implement this technique. It is not a highly used technique.

h. User Training. Algorithm analysis requires significant training in mathematics and
computer science. Generally, it will be done by a specialist.

L a
LR N
LAY 5

4-82

v

,'.
.
ot
et
PP
.

N1 _J AR IR

i. Costs. The cost to analyze an algorithm is dependent on the complexity of the
algorithm and the amount of understanding about algorithms of the same class.

jo References.

: (AHO 74) (HOA 64)
iy (BEN 79) (HOR 78)
o (HOA 61) (WEI 77)

4.3.2.1.3 Executable Assertion Testing.

Executable assertion testing is a three step process consisting of generating the
assertions, translating the assertions into processable program statements, and processing
the assertions. Assertion generation is a method of capturing the intended functional
properties of a program in a special notation, called the assertion language, for insertion
into the various levels of the program specification, including the program source code.
Once these assertions are identified, they are translated into statements which are
compilable. Assertion processing is the process of checking the assertions of a program
during execution. This technique serves as a bridge between the more formal program

correctness proof approaches and the more common "black box" testing approaches.

Executable assertions are special statements inserted into the source code of a program.
They allow the programmer to specify conditions that are required for correct operation
of the program. If such a condition does not hold during execution of the program, this
fact is reported via an error message. The programmer can also specify actions to be

taken when an assertion is violated.

Most compilers do not recognize and translate assertions—an assertion preprocessing tool
must be used. The tool generates code, in the same language as the rest of the program,
which carries out the condition checking and error handling logic for the assertion.
Different preprocessing tools recognize different forms of assertions. A programmer can
augment a less powerful tool by writing code to do some of the condition checking.

a. Information Input. A specification of the desired functional properties of the program
is the input required for assertion generation. For individual modules, this breaks down,

at a minimum, to a specification of the conditions which are "assumed" true on a module

4-83

P e S S T SRS

IR AT Y B S S R v -
L R T AL S CR O RS N U O) AL S At i e s g N

entry and a specification of the conditions desired on module exit. If the specification
from which the assertions are to be derived include algorithmic detail, the specifications S L

will indicate conditions which are to hold at intermediate points within the module as

MR . . ey

well. Generally, assertions are specified in the form of comments in the source program. . .0 -
A program containing user specified assertions is then processed by the dynamic assertion)
: processor.
-I b. Information Output. The assertions which are created from the functional or

algorithmic specifications are expressed in a notation called the assertion language. This
notation commonly includes higher level expressive constructs than are found, for
example, in the programming language. An example of such a construct is a set. Most
commonly the assertion language is equivalent in expressive power to the first order
predicate calculus. Thus expressions such as "forall i in set S, A[i] A[i+1] " or "there
exists x such that f(x) = 0" are possible. The assertions which are generated, expressing

the functional properties of the program, can then be used as input to a dynamic assertion

B B AREERTRLA

processor, a formal verification tool, walkthrough, specification simulators, and
inspections, among other testing techniques. The outputs of assertion processing consists
of a list of the assertion checks performed and a list of exception conditions with trace

information for determining the nature of the violation.

c. Outline of Method. Executable assertions are constructs added to a programming

Pl

language. They do two things: indicate by an output message that something has gone

wrong in a program, and permit the programmer to specify action that should be taken

when such an error occurs. The general form of an executable assertion is:

e
. .

r ASSERT condition;

. FAIL block;

a3

;;I The "condition" is an expression that can be evaluated logically (as TRUE or FALSE)
L:- during execution of the program. The "fail block" is optional—it contains the error-
E_; handling code.

»

Assertions must be translated into executable code. This is usually done by a preprocess-
g ing tool, although some compilers will accept and translate assertions. The kinds of
conditions that can be checked by assertions, and the syntax for declaring these
»

X

> 4-84

LA A ~
OASA A FAR

. - .‘. e - ~ .f .‘.-‘. i’-‘.'- » o - - .'l. - - - '...- -
Yy l‘\‘ﬂ\‘.“‘-“‘h’:-‘!‘.\‘ [AR SR

Lo aam aaun qvm o o r—_m‘ —— —— .“» N —

4
L
<
r
)
L
-
]
]
4
o
J
.
L

R Oy

conditions, vary from tool to tool. The types of assertions accepted by a tool are often

referred to as its "assertion language".

.
»

The general form of a translated assertion is:

IF (NOT condition) THEN
Print error message;
Execute fail block

END IF

b The user must decide what assertion checks to make, encode them in the assertion

t language, and insert them in the code. Assertions should be "programmed" at the same
time as the code itself, for several reasons:
. Writing the assertions increases the programmer's understanding of the purpose and
L design of the program.
i ' . The assertions themselves will have mistakes which have to be debugged.
. Assertions are useful throughout the life of the program, but may be turned off

when the code is introduced for operational use so that run-time efficiency is not

affected.

. Adding a full set of assertions to a large, already coded program is a tedious job that

no one will want to do.

The processing of the assertion violation will, minimally, keep track of the total number
of violations for each assertion, print a message indicating that a violation of the
assertion has occurred, and print the values of the variables referenced in the assertion.
In addition, the number of times the assertion is checked may be kept and printed when a
violation occurs. Sufficient information should be reported upon violation of an assertion
to assist the programmer of the specific nature of the error. Specifying assertions within
comments is a valuable form of documentation and also ensures that the source program

is kept free of non-portable, tool specific directives.

4-85

It is important to note that introducing assertions must not alter the functional behavior
of a program. Execution time, however, will be increased; the amount of which will

depend on the number of assertions which are processed.

How reliable assertions are depends upon the person writing them. To write good
assertions, a programmer must understand the way his program is supposed to operate, be
familiar with the assertion language, and be thorough in his use of assertions. Assertions
have to be debugged just like the rest of a program. In order to effectively utilize
assertion processing, test data should be generated which will cause the execution of each

assertion.

The test data used has a great affect on the reliability of executable-assertion testing.
Test data must cause assertions to be violated or errors will go undetected. To be
effective, assertion testing should be combined with a systematic method of generating

test data, such as structural or functional testing.

d. Example. Since executable assertion testing is so closely entwined with program
development, only brief examples are given. An example of assertion generation and
translation is followed by assertion processing. For more thorough examples, see the

references.

During program development, the requirement arises for sorting the elements of an array,
or table. In order to support flexible processing in the rest of the system, the array is
declared with a large, fixed length. However, only a portion of the array has elements in
it. The number of elements currently in the array, when passed to the sort routine, is
contained in the first element of the array. The array is always to be sorted in ascending
order. The sorted array is returned to the calling program through the same formal

parameter.

BT A A i S S g AN S e N e e s a e e s e e e e e e

The first specification of the sort routine may appear as follows:

SUBROUTINE SORT (A, DIM)

C
C A is the array to be sorted
C DIM is the dimension of A
C
C
C sort array
C
RETURN
END

The characteristics of the subroutine may be partially captured by the following

k assertions.

Y ASSERT INPUT (0 € A(1) € DIM),(DIM > 2)
ASSERT OUTPUT (A(1) =0 v A(1) = 1 A true) v
(A(1)>1 A FORALLIIN [2..A(1)] A() A(+1))

The input assertion notes the required characteristics of A(l) and DIM. The output

assertion indicates that if there were 0 or | elements in the array, the array is sorted by

default. If there are at least 2 elements in the array, then the array is in ascending order.

The next cut at the program may have the following appearance. An intermediate

assertion is now shown.

SUBROUTINE SORT (A, DIM)

A is the array to be sorted
DIM is the dimension of A

O0O00n

ASSERT INPUT (O € A(l) DIM), (DIM> 2)
IF (A(1) .LE. 1) GOTO 100
ASSERT (2 €A(1) € DIM)

Sort non-trivial array

S000

0 ASSERT OUTPUT(A(1)=Ov A(l)=1 true)
(A()>1 A FORALLIIN [2..AM] A <A®1+1)
RETURN
END

T T— Y ———— v T T T W W W Y ST

Suppose a straight selection sort algorithm is chosen for the non-trivial case (i.e., find the
smallest element and place it in A(2), find the next smallest and place it in A(3), and so
forth, where the original contents of A(2) is exchanged with the element that belongs
there in the sorted array). An appropriate intermediate assertion is included within the
sorting loop.

PERFORM STRAIGHT SELECTION SORT

DO 50 J = 2, A(l)
find smallest element in A(J) .. A(A(1)+2)
let that element be A(K)
exchange A(J) and A(K)

aoooon o0

L ASSERT (2 € 3 S A()

] (FORALLTIN [2..A(D] A()SA(I+1)

B 50 CONTINUE

A signiticant issue which we have not dealt with yet is asserting, on termination, that the
b sorted array is a permutation of the original array. In other words, we wish to assert that
{ in the process of sorting no elements were lost. To do this at the highest level, our first
cut at the program requires advanced assertion language facilities. The interested reader
is referred to references (CHO, STU75).

The following is an example of assertion processing. The program segment in figure :
4.3.2.1-1 is taken from a Pascal program which calls on routine 'sort' to sort array 'A',
consisting of 'N' integer elements, in ascending order. The assertion following the call to
sort asserts that the elements are indeed in ascending order upon return from the sort

procedure. The numbers to the left are the line numbers from the original source.

12 Var o
13 N : integer; [
14 A :array [l..MAXN] of integer; :
26 begin

® ®)
56 sort (N,A);
57 (+ assert forall iin [1.N-1] : Ali]=a [i+ 1]

Figure 4.3.2.1-1. Source Program With Untranslated Assertions

1-88

DA AR

K
R T T SRR R - . N
PR L ST ST AL 1PN, YA Py

........

freR vy

a4

The program segment in figure 4.3.2.1-2 is that which results after all of the assertions
have been translated into Pascal. Note that a rather large number of statements were
used to implement the assertion. This is due to the rather involved checking required to
implement an "assert forall . . .". Simpler assertions will require fewer statements. The
specification could be reduced through the use of a common assertion violation procedure.

12
13
14
15
16
17

29

77
78
78
30
81
82
33
84
35
36
87
38
39
90
91
92

During the testing the following values of A were used in successive executions of routine

sort.

Execution

W N -

Var

Array A
0 3 12 27 53 171 201 251 390 501 S :}
0 12 3 53 27 201 171 390 251 501 s '-'.'_.-,'--fj "]
501 390 251 201 171 53 27 12 3 0 el SR)
0 0 0 0 0 0 0 0 0 0) °
0 0 0 100 100 100 999 999 999 1000 5

N : integer;

A :array [l..MAXN] of integer;

AssertVioCount : array [l.. NumofAsserts] of integer;
AssertXqtCount : array [l.. NumofAsserts] of integer;
assert : boolean;

begin

sort (N,A);

(* assert foeall tin [1.N-1]: A[i] = A i+ 1]"
AsserthtCount[J] = AsserthtCount[%‘ H
assert : = true;
it=13
while (i <= N) and (assert) do (* check assertion *)

_i_fA[i] Ali+ 1] then
assert := false
el

—

i=i+ [}

if not assert then begin (* assertion violation *)
AssertVioCount [3] := AssertVioCount [3]: 1;
Writeln ('violation of assertion 3 at statement57");
Writeln ('on execution:', AssertXqtCount [3]);
Writeln ("arrayA =', A)

end (* assertion violation *);

o

Figure 4.3.2.1-2. Translated Assertions

4-89

’l
1
g
1
K
F,

T e T W~ Y W T ¥ rewr ey~ Ty e

The resulting execution produced the following assertion violation:

violation of assertion 3 at statement 57 on execution: 3
array A =3 12 27 53 171 201 251 340 501 0

This was the only violation that occurred. Subsequent analysis of the sort procedure
indicated that the error was due to an "add-by-one" error on a loop limit. Another
detailed example can be found in (STU75).

e. Effectiveness. Executable assertion testing particularly when used in conjunction with
an allied technique like functional testing or structural testing, can be extremely
effective in aiding the testing of a program. Such effectiveness is only possible, however,
when the assertions are used to capture the important functional properties of the

program. Assertions such as the following are of no use at all.

I1=0
[=1+1
ASSERT 1> 0

Capturing the important properties can be a difficult process, and is prone to error. Such
effort is well rewarded, though, by increased understanding of the problem to be solved.
Indeed, assertion generation is effective because the assertions are to be redundant with
the program specifications. This redundancy enables the detection of errors. A cost-
effective procedure, therefore, is to develop intermediate assertions only for particularly
important parts of the computation. Input and output assertions should always be

employed whenever possible.

The effectiveness of executable assertion testing will depend upon the quality of the
assertions included in the program being analyzed. Moreover, if the translation is being
done by hand, that is, without the use of a dynamic assertion processor, the amount of
time required to translate coupled with the unreliability associated with the process will
reduce its effectiveness. Nevertheless, the technique can be of significant value in

revealing the presence of program errors.

4-90

Assertions can be used to detect a wide variety of errors. They are most effective
against computation errors, but have also shown to be effective in catching logic, data-
input, data handling, interface, data definition, and database errors.

Executable assertions can detect any error that can be expressed as a condition in the
assertion language. Some important examples of such errors are:
. The result of a computation is outside of a range of reasonable values, or is

inconsistent with another result.

. A variable does not behave as intended: it changes value when it should not, or it
does not change in the desired way.

. Control flow is incorrect: the branch taken is incompatible with program condi-
tions, or a special case is not handled properly.

. A call to a routine results in an unacceptable condition on return.
. The output of a routine is incorrect.

As well as detecting errors, executable assertions can do the following things:

. Indicate that a program is operating incorrectly.

. Help the programmer to locate errors.

. Indicate that a program is being used improperly.

. Provide fault-tolerance in a program.

. Express specifications and design intentions as in-line documentation of the pro-
gram.

. Form the basis for a formal verification of a program.

f. Applicability. This technique is generally applicable during unit, module, and
integration test phases. If run-time efficiency is not a problem, the assertions may be
left in an activated state in the operational program.

4-91

— ey " L oy e N—p—— -
R S Ta Y e e LR [P Tt R . : L T o

1]
Bt e

g Maturity. Tools which process executable assertions exist for most common high-order
languages (Cobol, Fortran, Jovial, PL/I, Pascal), since these languages do not include
assertions as a statement type. Executable assertion testing is a fairly mature test

F
]
1)
.
»

1
i
T
-a
]
4
T e
4

technique.

h. User Training. To write assertions, a programmer needs to understand how the
program is designed and coded. He also needs to develop some skill in handling assertion

constructs—this comes with a little experience. To write good assertions, a programmer

@ must then do the following: :
- . He must find out enough about the application area of the program to develop tight ﬂ
bounds on the values of variables and the results of computations. i

o e
: . He must write assertions which can trap special error conditions such as logic and L ;

- data flow errors. This can be difficult when using an assertion language of limited ST ,f.‘J
power. T |

- g

- '- . “

. He must be thorough—all conditions that can be checked for assertions must be : :

identified.

i. Costs. The costs of assertion testing depends on the number of assertions placed in the
code, the difficulty of writing and debugging them, and the number of test runs made with
the asserted program. There is little data or experience that can be used to gauge the
magnitude of these costs. Writing and debugging assertions can be expected to add
significantly to costs at the beginning of a project, while the overhead of making test runs
should not be as great.

The computer resources used in assertion testing depend on how thoroughly assertions are
used. The categories of computer overhead are:) e
. The time required by the preprocessor and compiler to turn the assertion into '

executable code.

. The extra execution time required by the assertion checks. '

. The extra space required by the source and executable versions of the program due

to the assertions.

L J
' .'
. . .

’

4-92

_./.‘.A.;.‘;'.

- -‘.. -
‘e - P - e N LR L T . L - L Ta et e . R
AP RSP AINIE o7 S AT e S S e R S N R LR

T —— T " —— T Al a2 0 SuE S ANA SSE SEN Sl NS man San

The preprocessor and compiler overhead will be incurred each time either the assertions
or the code are changed. The execution time overhead will be incurred once for each test
run. Once a production version of the program is achieved, the assertions can be removed
by recompiling the program with the assertions disabled. This is performed by not using
the preprocessor, that is, by compiling the source program with the assertions in the form
of comments. In this way, the execution time overhead is not incurred by the end-user of
the program. The best available estimate of the cost in analyst time to develop the
assertions is the cost to write an equivalent amount of code.

j. References.

(BEN 78) (HET 73) (STU 75)
(CHO) (HOA 71) (TAY 80)
(HEI 82) (MAN 78) (YEH 77)

4.3.2.1.4 Interactive Test and Debug Aids.

Interactive test and debug aids are tools used to control and/or analyze the dynamics of a
program during execution. The capabilities provided by these tools are used to assist in
identifying and isolating program errors. These capabilities allow the user to—

. Suspend program execution at any point to examine program status.

. Interactively dump the values of selected variables and memory locations.
. Modify the computation state of an executing program.

. Trace the control flow of an executing program.

Another common name for this technique is symbolic debugger.

a. Information Input. Interactive test and debug aids require as input the source code

that is to be executed and the commands that indicate which testing operations are to be
performed by the tool during execution. Included in the commands are indications of
which program statements are to be affected by the tool's operation. Commands can be
inserted in the source code and/or entered interactively by the user during program

execution at preselected break points.

b. Information Output. The information output by an interactive test and debug aid is a

display of requested information during the execution of a program. This information may

4-93

-
; .
‘ o

BREAK:

DUMP:

E'V TRACE:

SET:

CONTENTS:

SAVE:

RESTORE:

CALL:

EXECUTE:

EXIT:

during execution.

LT .
L P S . -
RO « 4

« oo
--.-..-.'\w.\-‘. v,
‘ta'aaalalstatate " dNaVa s

include the contents of selected storage cells at specific execution points or a display of
control flow during execution.

c. Outline of Method. The functions performed by an interactive test and debug aid are

determined by the commands input to it. Some common commands are described below.

Suspend program execution when a particular statement is execut-

ed or a particular variable is altered.

Display the contents of specific storage cells, e.g., variables,

internal registers, other memory locations.

Display control flow during program execution through printed

traces of —

. statement executions (using statement labels or line num-
bers),

. subroutine calls, or

. alterations of a specified variable

Set the value of a specified variable.

Display the contents of certain variables at the execution of a

specific statement.

Save the present state of execution.

Restore execution to a previously SAVEd state.

Invoke a subroutine.

Resume program execution at a BREAK point.

Terminate processing.

These commands allow complete user control over the computation state of an executing

program. It allows the tester to inspect or change the value of any variables at any point

4-94

4t
[P

The capabilities of special interactive test and debug aids can also ve found in many
implementations of compilers for such languages as Fortran, Cobol, and PL/I, which
contain testing features added to the language.

d. Example. A critical section of code within a routine is to be tested. The code

r;"- computes the values of three variables, X, Y, and Z, which later serve as inputs to other
h routines. To ensure that the values assigned to X, Y, and Z have been correctly computed
in this section of code, an interactive test and debug aid is used to test the code.

b The code is initially inserted with two commands. A BREAK command is inserted
- immediately before the first statement and immediately after the last statement of the
k section of code being tested. Preceding the second BREAK command, a CONTENTS
command is also inserted to cause the contents of X, Y, and Z to be displayed after their
appropriate values have been assigned.

The program containing the code inserted with these commands is executed. At the first
BREAK point, execution is halted and a prompt is issued to the user's terminal requesting
a command to be entered. A SAVE command is entered at the terminal to save the
present state of execution. A SET command is then entered to set the values of two
variables, A and B, which are used to compute the values of X, Y, and Z. The EXECUTE

command is entered to resume program execution,

At the end of the execution of the section of code under analysis, the preinserted
CONTENTS command displays the computed values of X, Y, and Z. The preinserted
BREAK command allows time for these values to be examined and gives the user the
opportunity to enter new commands. At this time, a RESTORE command is entered to
restore the computation state to the one previously saved by the SAVE command. The
computation state returns to that which followed the first BREAK command, allowing the
code under analysis to be tested with different input values. Different values for A and B
are entered and the contents of X, Y, and Z are observed as before. This process is

repeated several times using different, carefully selected values for A and B and the

corresponding values of X, Y, and Z are closely examined each time. The results of
several computations look suspect. Their input and output values are noted and the code
is more thoroughly examined. The program is finally terminated by entering the EXIT

command at one of the two possible break points.

4-95

e. Effectiveness. To be an effective testing tool, an interactive test and debug aid should
be used with a disciplined strategy to guide the testing process. The tools can be easily

misused if no testing methodology is associated with their use. -

3
[N
Wt

Effectiveness can depend on how easy it is to implement this technique. A desired

automatable feature is the ability to trace data from a low-level program representation

"
8
AN

(object-code) to a high-level program representation (source-code).

f. Applicability. Interactive test and debug aids can be applied to any type of source

.

code. Most existing tools, however, are language dependent (i.e., will operate correctly

: » only for specified languages) and also operating system dependent. This technique is most
F applicable during unit, module and integration test phases.

g. Maturity. Interactive test and debug aids are highly mature. Tools are available for

most high order languages.

h. User Training. A minimal amount of learning is required to use these tools. It is
comparable to the learning required in using a text editor. However, if the tool is to be
used most efficiently, some learning is required in utilizing the tool in an effective testing

strategy.

i. Costs. Programs executing under an interactive test and debug aid will require more
computing resources (e.g., execution time, memory for diagnostic tables) than if executed
under normal operation. The cost is dependent on the implementation of the tool. For
example, those based on interpretive execution will involve costs different from those

driven by monitor calls.
j. References.

3 (MYE 79)

o (SPE 79)

(TAY 79)

4.3.2.2 Random Testing

Random testing is a black-box testing technique in which a program is tested by randomly

sampling inputs. The sampling criteria may or may not consider the knowledge of the

RISCINE At aRIE i et SRR I i s A ML S el i oYL S SN IR R S S LN v

actual distribution of inputs. This technique is useful in making operational estimates of
software reliability.

One striking advantage of random testing is that the test data generator utilized for the
random test may create sequences of data and resulting events never envisaged by the
designers. Such 'could never happen' events have an unpleasant manner of surfacing as
soon as the software project is in the operational environment.

a. Information Input. The input to this technique is the randomly generated input values.

b. Information Output. The primary output of this technique is the detection of errors

E that occur because certain sequences of events occur during execution of a program.
!

¢. OQutline of Method. This ad hoc testing technique involves several steps. Some kind of

random input generator is necessary. The type of generator used depends on the type of
b‘ input data. If the number of outputs is large, then the method of checking for anomalies
is usually automated. As the outputs from the random inputs are generated, they are
compared with known or expected output values. All discrepancies are reported along
with the input values that detect the discrepancy. If the number of outputs is small, then

the generated outputs and comparison outputs are compared visually. The investigator
then attempts to explain the discrepancies.

d. Example. Random testing may be used to detect errors in the software, as described
above, or it may be used in a simulation of the actual environment to estimate actual
performance. In the latter case, the random data generator would be designed to provide
data according to a 'scenario' which describes the envisioned data environment. Such a
scenario would include both valid and invalid data to test the software as severely as
possible.

- Random testing should never be the principal testing approach in a test plan. It can be,
however, a very practical approach in specific environments, and provide a valuable
supplement to conventional testing techniques.

- e. Effectiveness. This technique can be used to detect a range of errors with a low level
of assurance but no specific types of errors with a high level of assurance (fig. 2-14).

AP S M St Mt St e D P St SN e ACE R ERA TN S AN I S S L T T

However, this method does not detect these errors as well as other test techniques. In
terms of probability of detecting errors, a randomly selected collection of test cases has
little chance of being an optimal subset of all possible inputs.

f. Applicability. This technique is applicable during the unit, module and integration
testing phases, and to a software development project that has a dedicated computer.

g. Maturity. This test technique is straightforward in principle and concept. It is a fairly

mature method to test a program.

h. User Training. There are no specific skills needed to implement this technique.

i. Costs. Depending on the environment, the cost of this technique will vary from low to

high. Executing a program with the randomly generated inputs is the primary overhead.

jo References.
(MYE 79)

4.3.2.3 Functional Testing

Functional testing is the validation of a program's "functional correctness" by execution
under controlled input stimuli. The two techniques described in this section are
specification-based functional testing and cause-effect graphing. Cause-effect graphing
is a method used to assist specification-based functional testing in the area of test

case/test data development.

4.3.2.3.1 Specification-Based Functional Testing.

Functional testing involves generating test data based on knowledge of the functions
performed by the program under test, and on the nature of the programs inputs. A large
number of test cases can be generated this way for most programs. There are no metrics
to indicate the thoroughness of testing or to tell when testing can stop; but certainly

every function should be tested at least once.

- T a T WV WA N, Y . .
D e R N A)

v‘rw—'f‘.'-, "
A
BPLR

e Tt T A, - Ct Al e e T
VPRIV PRI L SN . P e la et e ety Sg C

-y —— N ——— v v T g A Zenk auts Jeous o o T

a. Information Input. Data information and function information are the two inputs of

this technique.

Data information. This technique requires the availability of detailed requirements and
design specifications and, in particular, detailed descriptions of input data, files and data
bases. Both the concrete and abstract properties of all data must be described. Concrete
properties include type, value ranges and bounds, record structures, and bounds on file
data structure and data base dimensions. Abstract properties include subclasses of data
that correspond to different functional capabilities in the system and subcomponents of

compound data items that correspond to separate subfunctional activities in the system.

Function information. The requirements and design specifications must also describe the

different functions implemented in the system.

Requirements functions correspond to the overall functional capabilities of a system or to
subfunctions which are visible at the requirements stage and are necessary to implement
overall capabilities. Different overall functional capabilities correspond to conceptually
distinct classes of operations that can be carried out using the system. Different kinds of
subfunctions can also be identified. Process descriptions in structured specifications, for
example, describe data transformations which are visible at requirements time and which
correspond to requirements subfunctions. Requirements subfunctions also occur implicitly
in data base designs. Data base functions are used to reference, update and create data

bases and files.

The designer of a system will have to invent both general and detailed functional
constructs in order to implement the functions in the requirements specifications.
Structured design techniques are particularly useful for identifying and documenting
design functions. Designs are represented as an abstract hierarchy of functions. The
functions at the top of the hierarchy denote the overall functional capabilities of a
program or system and may correspond to requirements functions. Functions at lower
levels correspond to the functional capabilities required to implement the higher level
functions. General design functions often correspond to modules or parts of programs
which are identified as separate functions by comments. Detailed design functions may
be invented during the programming stage of system development and may correspond to

single lines of code.

4-99

RS

j-

b b. Information Output. The output to be examined depends on the nature of the tested

function. If it is a straight input/output function, then output values are examined. The

testing of other classes of functions may involve the examination of the state of a data

base or file.

c. Outline of Method. Functional testing is sometimes referred to as "black box" testing,

because detailed information about the program's internal structure need not be used to A
formulate the test data. Instead, test data is chosen in the following ways: '-“ A 6 B
. Data is chosen to explore whether the program correctly performs the functions :

that it is intended to perform. The functions should be described in the require-

ments and specifications for the program.

. The inputs to the program are examined. Using knowledge of the quantities they
represent and how the program functions ought to operate on them, the set of
possible values for each input variable can be partitioned into "subdomains". Test

data sets are generated by taking combinations of samples from each subdomain.

. Some measure of the program's output behavior is defined. Test data is sought
which drives this measure toward an undesirable value. Techniques from mathe-

matical optimization can be used to do this.
Errors are detected by manually examining the program's output.

Functional testing is supported by two types of automated tools — test harnesses or
drivers and stress testing tools. A test harness provides an environment for testing
individual software modules or groups of modules. The tool can fill in for missing program
components, including a main program. Test harnesses are most useful in an interactive
environment—there they can be used to start, terminate, or interrupt execution at an

arbitrary point in a program. Most test harness tools have some debugging capabilities.

A stress testing tool such as the adaptive tester (ref. DAV) can automatically generate
test data. The tool tries to find input data that will cause undesirable behavior in the test
program. To do this, the user must come up with a numerical measure of program
behavior —this is called an "objective function". Various techniques can be used to
maximize (or minimize) the value of the objective function; most of these assume that the

objective function has certain continuity properties.

P

4-100

Gt

wtateTa
a At LI S S

R el e ,‘/ e S . N RS . .
- . . St A PTS . . IR - DI S e T
VPN S R LR LTI T I R SR AP S AL R ATUR L IS TS TSR S

d. Examples. This section provides examples of two types of functional testing.

Example [: Testing of requirements functions.

Application. A computerized dating system was built in which a sequential file of
potential dates was maintained. Each client for the service would submit a completed
questionnaire which was used to find the five most compatible dates. Certain criteria had
to be satisfied before any potentis! data was selected and it is possible that no date could
be found for a client or less than five dates found.

Error. An error in the file processing logic causes the program to select the last potential

date in the sequential file whenever there is no potential date for a client.

Error discovery. The number of dates which are found for each client is a dimension of
the output data and has extremal values 0 and 5. If the "find-a-date" functional capability
of the system is tested over data for a client for which no date should exist then the

presence of the error will be revealed.

Example 2: Testing of detailed design functions.

Application. The designer of the computerized dating system in Example 1 decided to
process the file of potential dates for a client by reading in the records in sets of 50
records each. A simple function was designed to compute the number of record subsets.

Error. The number of subsets function returns the value 2 when there are less than 50
records in the file.

Error discovery. The error will be discovered if the function is tested over the extremal
case for which it should generate the minimal output value I. Note that this error is not
revealed (except by chance) when the program is tested at the requirements specification
level. It will also not necessarily be revealed unless the code implementing the function is

tested independently and not in combination with the rest of the system,
e. Effectiveness. Studies have been carried out which indicate functional testing to be

highly effective in detecting a range of errors in each of the major error categories (fig.
2-14). 1Its use depends on specific descriptions of system input and output data and a

4-101

. A

A

complete list of all functional capabilities. The method is essentially manual and
somewhat informal. If a formal language could be designed for describing all input and
output data sets then a tool could be used to check the completeness of these
descriptions. Automated generation of extremal, non-extremal and special cases might be

diificult since no rigorous procedure has been developed for this purpose.

For many errors it is necessary to consider combinations of extremal, non-extremal and
special values for "functionally related" input data variables. In order to avoid
combinatorial explosions, combinations must be restricted to a small number of variables.
Attempts have been made to identify important combinations (see references) but there

are no absolute rules, only suggestions and guidelines.

Since furctional testing does not have a well-developed methodology or an objective
measure of test thoroughness, its success depends heavily upon the skill of the person
conducting the tests. Functional testing often operates under a budget constraint, in

which case efficiency in finding errors is of utmost importance.

Any error that prevents a program from operating correctly can be found through
functional testing. However, functional testing alone is not useful for determining the
efficiency of a program or for debugging. Functional testing cannot guarantee the

absence of errors or that the code has been thoroughly tested.

f. Applicability. Furctional testing can begin at the unit, module, or integration test
phase if the units perform well-defined functions, thus it can be applied during bottom-up

development as well as top down.

g. Maturity. Since functional testing does not have a well-developed methodology or an
objective measure of test thoroughness, its success depends heavily on the skill of the
person conducting the tests. Supporting tools, such as test harnesses or test drivers, are

readily available or can easily be implemented.

h. User Training. It is necessary to develop some expertise with the identification of
extremal and special cases and to avoid the combinatorial explosions that may occur when
combinations of extremal and special values for different data items are considered. It is

also necessary to become skilled in the identification of specifications functions althc ugh

SN Jhani 2 A e e At Sre Jruiase gl atec A et S - Ao ar

P ———

T —— —— e P— e o B

this process is simplified if a systematic approach is followed for the representation of
requirements and design.

i. Costs. The cost of functional testing is most sensitive to the number of test runs
made. This is true of both analyst and computer costs, since the set-up costs are low.
Test harnesses and stress testing tools have very low overheads and can provide a net

saving in computer and analysis costs over manual testing.

j. References.
(HOW 80A) (HOW 80D) (DAV)
(HOW 80C) (MYE 79) (HEI 82)

4.3.2.3.2 Cause-Effect Graphing.

Cause-effect graphing is a test-case design methodology that can be used with functional
testing. It is used to select in a systematic manner a set of test cases which have a high
probability of detecting errors that exist in a program. This technique explores the inputs
and combinations of input conditions of a program in developing test cases. It is totally
unconcerned with the internal behavior or structure of a program. In addition, for each
test case derived, the technique identifies the expected outputs. The inputs and outputs
of the program are determined through analysis of the requirement specifications. These
specifications are then translated into a Boolean logic network or graph. The network is

used to derive test cases for the software under analysis.

a. Information Input. The information that is required as input to carry out this

technique is a natural language specification of the program that is to be tested. The
specification should include all expected inputs and combinations of expected inputs to

the program, as well as expected outputs.

b. Information Output. The information output by the process of cause-effect graphing

consists of the following:

. An identification of incomplete or inconsistent statements in the requirement
specifications.
. A set of input conditions on the software (causes).

4-103

R
Dl '
.

At e A
R

AR R

.
. .
o,

F oo e

B Rtk

T T T T T R T TR R T R T B W N S T N VUL IR .

A set of output conditions on the software (effects).

A Boolean graph that links the input conditions to the output conditions.

A limited-entry decision table that determines which input conditions will result in

each identified output condition.

A set of test cases.

The expected program resuits for each derived test case.

The above outputs represent the result of performing the various steps recommended in

cause-effect graphing.

C.

Outline of Method. A cause-effect graph is a formal language translated from a

natural language specification. The graph itself is represented as a combinatorijal logic

network. The process of creating a cause-effect graph to derive test cases is described

briefly below.

Identify all requirements of the system and divide them into separate identifiable

entities.
Carefully analyze the requirements to identify all the causes and effects in the
specification. A cause is a distinct input condition; an effect is an output condition
or system transformation (an effect that an input has on the state of the program or
system).

Assign each cause and effect a unique number.

Analyze the semantic content of the specification and transform it into a Boolean

graph linking the causes and effects; this is the cause-effect graph.

. Represent each cause and effect by a node identified by its unique number.

. List all the cause nodes vertically on the left side of a sheet of paper; list the

effect nodes on the right side.

4-104

l‘.r' - ’.‘ - .

..
. v
0 l' voa

LR N |

Nad

. e SISV R TTIT YRTT PR At S T
et A TAT S IS A T SR S i S e NI ML M-S S v, o budide At e o dven -
- - N PO - . Lt S . - A

+ Interconnect the cause and effect nodes by analyzing the semantic content of
the specification. Each cause and effect can be in one of two states: true or
false. Using Boolean logic, set the possible states of the causes and determine
under what conditions each effect will be present.

. Annotate the graph with constraints describing combinations of causes and/or
effects that are impossible because of syntactic or environmental constraints.

. By methodically tracing state conditions in the graph, convert the graph into a

limited-entry decision table as follows. For each effect, trace back through the
graph to find all combinations of causes that will set the effect to be true. Each
such combination is represented as a column in the decision table. The state of all
other effects should also be determined for each such combination. Each column in

the table represents a test case.
. Convert the columns in the decision table into test cases.

This technique to create test cases has not yet been totally automated. However,
conversion of the graph to the decision table, the most difficult aspect of the technique,
is an algorithmic process which could be automated by a computer program.

d. Example. A database management system requires that each file in the database have
its name listed in a master index which identifies the location of each file. The index is
divided into ten sections. A small system is being developed which will allow the user to
interactively enter a command to display any section of the index at his terminal. Cause-
effect graphing is used to develop a set of test cases for the system. The specification
for this system is explained in the following paragraphs.

To display one of the ten possible index sections, a command must be entered consisting
of a letter and a digit. The first character entered must be a D (for display) or an L (for
list) and it must be in column 1. The second character entered must be a digit (0-9) in
column 2. If this command occurs, the index section identified by the digit is displayed on
the terminal. If the first character is incorrect, error message A is printed. If the second

character is incorrect, error message B is printed. The error messages are—

e A
AN SR

PRM e BN She M. Bouh Mben Sl Aean Bugy J NEAAtat aten auen 4

A: INVALID COMMAND
B: INVALID INDEX NUMBER
The causes and effects have been identified as follows. Each has been assigned a unique Ve
number. o _’.-
; if:*;zfq
Causes SRR
1. Character in column 1 is D. Y e 1

2. Character in column I is L.

3. Character in column 2 is a digit.

F Effects ;'

50. Index section is displayed.

Al g

51. Error message A is displayed.

52. Error message B is displayed.

The following Boolean graph is constructed through analysis of the semantic content of

the specification.

Node 20 is an intermediate node representing the Boolean state of node | or node 2. The
state of node 50 is true if the state of nodes 20 and 3 are both true. The state of node 20
is true if the state of node 1 or node 2 is true. The state of node 51 is true if the state of

node 20 is not true. The state of node 52 is true if the state of node 3 is not true.
Nodes | and 2 are also annotated with a constraint that states that causes | and 2 cannot

be true simultaneously (the Exclusive constraint). The graph is converted into the

following decision table.

4-106

TEST CASES
CAUSES 1 2 3 4 B
B o
1 1 0 0 » e
0 1 0
1 1 0
EFFECTS :
50 1 1 0 0 [] ,
S1 0 0 1 . 1
52 0 0 0 1 D
E Figure 4.3.2.3-1. Decision Table i e '.

For each test case, the bottom of the table indicates which effect will be present

= (indicated by a 1). For each effect, all combinations of causes that will result in the .J
presence of the effect is represented by the entries in the columns of the table. Blanks in "' o ; ' “
[the table mean that the state of the cause is irrelevant. S
5 j.. SRR - . :
Each column in the decision table is converted into the following test cases. Lo
S :
.. &
Test Case No. Inputs Expected Results L
1 D5 Index section 5 is displayed - e
2 L4 Index section 4 is displayed T o
3 B2 INVALID COMMAND P e *1'
4 DA INVALID INDEX NUMBER ' '

Figure 4.3.2.3-2. Test Cases

e. Effectiveness. Cause-effect graphing is a technique used to produce a useful set of
test cases. It also has the added capability of pointing out incompleteness and ambiguities

in the requirement specification.

f. Applicability. Cause-effect graphing can be applied to generate test cases in any type R
& of computing application where the specification is clearly stated and combinations of : .

input conditions can be identified. Manual application of this technique is a somewhat

D

W W TS D Dy I B T

A T T Tt R DR S e D et
dndendoadodad odndadat > ol Ba'A 2" " a2 a8 e e a2

A JFN S AT SRR AF B SUSLDY It Sk e e R0t S s Sa it A L S i G et et M T A —— ’ " BN e SRt e e apas T v S e d

tedious, long, and moderately complex process. However, the technique could be applied
to selected modules where complex conditional logic must be tested. This technique is
applicable during algorithm confirmation through unit test phases.

[— =F e T v
LR IR

g. Maturity. Cause-effect graphing is a highly mature technique. It is not widely used

Dt id
'
e

mainly because it has not been totally automated. Manual application of this technique is

time consuming.

h. User Training. Cause-effect graphing is a mathematically-based technique that
requires some knowledge of Boolean logic. The requirement specification of the system

must also be clearly understood in order to successfully carry out the process.
i. Costs. Manual application of this technique will be highly labor intensive,

j- References.
(ELM 73)
(MYE 76)
(MYE 79)

ﬁ 4.3.2.4 Mutation Testing

Mutation testing is a test technique that involves modifying actual statements of the

. f
T B

h program. Mutation analysis and error seeding are two examples of this technique.
4.3.2.4.1 Mutation Analysis.

Mutation analysis is a technique for detecting errors in a program and for determining the

thoroughness with which the program has been tested. This technique is a method of
measuring test data adequacy or the ability of the data to insure that certain errors are
not present in the program under test. It entails studying the behavior of a large

collection of programs which have been systematically devised from the original program.

a. Information Inputs. The basic input required by mutation analysis is the original

source program and a collection of test data sets on which the program operates

correctly, and which the user considers to adequately and thoroughly test the program.

-, B e Tt WV R }
e e e AN AN
PRI A AP n“-.;'-p"\f\f 1'-\1'. A

o
-
-

3

Dt A A ST IS AT M A - U R - e S e s Sore Soen Riee B

b. Information Qutputs. The ultimate output of mutation analysis is a collection of test

data sets and an assurance that the collection is in fact thoroughly testing the program.
It is important to understand that the mutation analysis process may very well have
arrived at this final state only after having exposed program errors and inadequacies in
the original test data set collection. Hence it is not unreasonable to consider errors
detected, new program understanding, and additional test data sets to also be information

outputs of the mutation analysis process.

c. OQutline of Method. The essential approach taken in the mutation analysis of a

program is to produce many versions, each devised by a trivial transformation of the
original, and to subject each version to testing by the given collection of test data sets.
Because of the nature of the transformations, it is expected that the devised versions will
be essentially different programs from the original. Thus the testing regimen should
demonstrate that each is in fact different. Failure of execution to produce different
results invites suspicion that the collection of test data sets is inadequate. This usually
leads to greater understanding of the program and either the detection of errors or an

improved collection of test data sets, or both.

A central feature of mutation analysis is the mechanism for creating the program
mutations - the derived versions of the original program. The set of mutations which is
generated and tested is the set of all programs which differ from the original only in a
small number (generally | or 2) of textual details, such as a change in an operator,
variable or constant. Research appears to indicate that larger numbers of changes
contribute little or no additional diagnostic power.

The basis for this procedure is the "Competent Programmer" assumptions which state that
program errors are not random phenomena, but rather a result of lapses of human memory
or concentration. Thus an erroneous program is expected to differ from the correct one
only in a small number of details. Hence, if the original program is incorrect, then the set
of all programs created by making a small number of textual changes just described,
should include the correct program. A thorough collection of test data sets would reveal
behavioral differences between the original incorrect program and the derived correct

one.

EEAMIC i Rl aeus aone ahe W T W T T T Ty T o JM0ncleaiaine 4 S Bhee Bve A gy S AR-Ee Al S C A S Jiade St rad i e e ndh aam a1
R AR SRR - OO S A S R L L Pl

Hence, mutation analysis entails determining whether each mutant program behaves
differently from the original program. If so, the mutant is considered incorrect. If not,
the mutant must be studied carefully. It is entirely possible that the mutant is in fact
functionally equivalent to the original program. If so, its identical behavior is clearly
benign. If not, the mutant is highly significant, as it certainly indicates an inadequacy in
the collection of test data sets. It may furthermore indicate an error in the original

program which previously went undetected because of inadequate testing. Mutation

analysis facilitates the detection of such errors by automatically raising the probability of
each such error and then demanding justification for concluding that each has not in fact
been committed. Most mutations quickly manifest different behavior under exposure to

any reasonable test data set collection, and thereby demonstrate the absence of the error
t corresponding to the mutation by which they were created. This forces detailed attention
on those mutants which behave identically to the original and thus forces attention on any

b actual errors.

If all mutations of the original program reveal different execution behavior, then the
program is considered to be adequately tested and correct within the limits of the

"Competent Programmer" assumption,

d. Example. Consider the following Fortran program that counts the number of negative
and non-negative numbers in array A:

SUBROUTINE COUNT (A, NEG, NONNEG)

DIMENSION A(5)

NEG=0

NONNEG=0

DO 10 I=1,5

IF (A(1).GT.0) NONNEG=NONNEG+]
IF (A(I).LT.0) NEG=NEG+!

10 CONTINUE
RETURN
END

and the collection of test data sets produced by initializing A in turn to:

I 1 om
1 1 -1
-2 2 -2
3 3 -3
-4 4 -4
5 5 -5

Mutants might be produced based on the following alterations:

LT_ Change an occurrence of any variable to any other variable:
e.g.,

Atol

NONNEG to NEG

I to NEG

R .
. Change an occurrence of a constant to another constant which is close in value:
e.g.
lto O
Oto!l
0to-]
1to2

i A
B AR AR
eS0T

Change an occurrence of an operator to another operator:
e.g.,
NEG + 1 to NEG * |
NEG + 1 to NEG - |
A(D.GT.0 to A().GE.G
A().LT.0 to A(I).NE.O

Thus, the set of all "single alteration" mutants would consist of all programs containing

exactly one of the above changes. The set of all "double alteration" mutants would
consist of all programs containing a pair of the above changes.

4-111

i'-!‘.' AR AN DR - .
IR VORISR W PR Lb_‘h“_l:’_; —— e -\Ll

DN
BN
7

- .
c‘AA".L'A. PPN

M™% FHAICA A EE e o L SC Mt /I S /it Sy e S S A M L e L LT TR el Bt St e

Clearly many such mutations are radically different and would quickly manifest obviously
different behavior. For example, in changing variable I to A (or vice versa) the program is
rendered uncompilable by most compilers. Similarly changing "NEG=0" to "NEG=1" causes

a different outcome for test case I.

Significantly, changing A(I..GT.0 to A(I).GE.0 or A(D.LT.0 to A(I).LE.0 produces no
difference in run-time behavior on any of the three test data sets. This rivets attention
on these mutants, and subsequently on the issue of how to count zero entries. One rapidly
realizes that the collection of test data sets was inadequate in that it did not include any

zero input values. Had it included one, it would have indicated that:

IF (A(I).GT.0) NONNEG=NONNEG+!
should have been
IF (A(I).GE.0) NONNEG=NONNEGH+1.

Thus, mutation analysis has pointed out both this error and this weakness in the collection
of test data sets. After changing the program and collection of test data sets all mutants

will behave differently which raises our confidence in the correctness of the program.

e. Effectiveness. Mutation analysis is an effective technique for detecting errors, but it
must be understood that it requires combining an insightful human with good automated
tools. It is a reliable technique for demonstrating the absence of all possible mutation
errors (i.e., those involving alteration, interchanging, or omission of operators, variables,

etc.)

The need for good tools is easily understood when one realizes that any program has a
enormous number of mutations, each of which :nust be generated, exercised by the test
data sets, and evaluated. On the surface, this would appear to entail thousands of edit
runs, compilations and executions. Clever tools have been built, however, which operate
off a special internal representation of the original program. This representation is

readily and efficiently transformed into the various mutations, and also serves as the basis

for very rapid simulation of the mutants' executions, thereby avoiding the need for

compilation and loading of each mutant.

4§55
Py

ezt d

X7

S e

B T R A Tt O SC M I I At A SR AL At M A S I AR A B/ SR I Y TR

This tool set still does not bypass the need for humans, however. Humans must still carry

out the job of scrutinizing mutants which behave identically to the original program in
order to determine whether the mutant is equivalent or whether the collection of test

-, . ~a _a
data sets is inadequate. » o

At the end of a successful mutation analysis, many errors may be uncovered, and the
collection of test data sets may be very thorough. Whether the absence of errors is
established, however, must be considered relative to the "Competent Programmer"

assumption. Under this assumption, clearly all errors of mutation are detectable by
mutation analysis, thus the absence of diagnostic messages or findings indicate the

which cannot be modeled as mutations.

b absence of these errors. Mutation analysis cannot, however, assure the absence of errors

1. Applicability. Mutation analysis is applicable to any algorithmic solution
specification. This technique is applicable during unit and module test phases. As
r previously indicated, it can only be considered effective when supported by a body of

sophisticated tools. Tools enabling analysis of Fortran and Cobol source text exist. There
. is furthermore no reason why tools for other coding languages, as well as algorithmic
| design languages, could not be built.

g. Maturity. Mutation analysis is a fairly mature testing technique. The considerable
amount of necessary analyst time to check outputs of mutant programs is its major
drawback. Research and development of the technique is continuing, especially to the
newer high order languages.

h. User Training. This technique requires the potential mutation analyst to become
familiar with the philosophy and goals of this novel approach. In addition it appears that
the more familiar the analyst is with the subject algorithmic solution specifications, the
more effective he/she will be. This is because the analyst may have to analyze a
collection of test data sets to determine how to augment it, and may have to analyze two
programs to determine whether they are equivaleni.

i. Costs. In view of the previous discussion, it is important to recognize that significant
amounts of human analyst time are likely to be necessary to do mutation analysis. The
computer time required is not likely to be excessive if the sophisticated tools described

earlier are available.

j» References.

(DEM 79) (HEI 82)
(LIP 78)

4.3.2.4.2 Error Seeding.

Error seeding is a technique that evaluates the thoroughness with which a computer

program is tested by purposely seeding a supposedly correct program with errors.

a. Information Input. The input required by this technique is the original source program

and a collection of test data sets on which the program operates correctly, and which the
tester considers to adequately and thoroughly test the program. A desirable second input
is information on the relative distribution of different types of errors normally occurring

in this type of software.

b. Information QOutput. The output of this technique is an indication of the level of

undetected errors existing in the program. That is, if a large number of the seeded errors
are found, it is reasonable to assume that a correspondingly large number of the original,

true errors have also been found and corrected.

c. Outline of Method. This technique is similar to mutation analysis (see previous

section) in that the basis for the procedure is the "competent programmer" assumptions.
These assumptions state that program errors are not a random phenomenon, but rather are

the result of lapses of human memory or concentration.

Seeding a program with errors consists of changing statements in the program source
code by such alterations as changing an arithmetic operator, changing a relational
operator in a condition statement, or substituting the name of one variable for another. It
is expected that the introduction of these changes will cause the revised program to
generate different test results than the original program. Failure to do so invites
suspicion that the test data sets are insensitive, The seeded program and its outputs are

usually debugged by persons other than those who seeded the program with errors.

The proportion of seeded errors that remain undetected give an indication of the

corresponding proportion of true, undetected errors in the original, unseeded computer

program. That is, if 20% of the seeded errors were not detected by the test data sets, it
suggests that 20% of the actual errors have not been detected by this set of tests. The
original model is discussed by Harlan Mills (MIL72). Subsequent refinements have been
made and are discussed by the various sources listed in the references at the end of this
section.

In order to give the error seeding results greater validity, it is desirable to select the

seeded errors in a manner consistent with the types of errors expected in the tested

computer program.

Several considerations are appropriate (GAN79)—

. To be realistic, the errors should be representative of those found in large programs

in both type and frequency of occurrence.

. The error types must be applicable to the software under test and that test
environment.

. To evaluate test tools which utilize program execution, one or more errors should

lead to abnormal program behavior for at least some test data.

A static analyzer might be used to classify the source statements in the computer
program to be tested. The random generation of errors could then be weighted to reflect

the corresponding proportion of statement types in the computer program.

d. Example. The following description shows a typical usage of error seeding in the
integration test phase.

A launch sequence control computer program has completed its integration test success-
fully. Fifty errors were found and corrected. Historically, such programs have ..ad many
residual logical sequencing errors in this group, so it was decided to assess the adequacy

of testing for such errors using the error seeding technique.

Using knowledge of the kinds of errors made in the past, a similar assortment of errors

were randomly introduced into the launch sequence control. The integration tests were

4-115

“AD- Ri‘? 289 SDFTHRRE TEST HANDBOOK : SUFTHﬁRE TEST GUIDEBOOK YOLUME 373
2(U) BOEING AEROSPACE CO SEATTLE WA ENGINEERING
ECHNOLOGY DIY E PRESSON MAR 84 RADC-TR-84- 53 VOL 2
UNCLASSIFIED F38692 82-C-08059

AEEEEENNEEEEEE
EENNEEENNEEEEN
INEEEEE

PP

W e et~

I R RS

._.._L
SEEE

LLEMLmuu._m

Ty = Ty e, \ ..‘.

. -

.

-‘: "-“\1 .«

RIS A

g
l\ -

e e

g

1.4

Yy

AR

22 1

. U"b‘\t .
2" ~I\

e
&

-
2

AP

L e T AT, Y
LR Y
P

v
o

)

’
’-
.

then run against the seeded program. Fourteen of the twenty seeded errors were
detected; that is, 70% of the seeded errors were found. This indicated that the 50 errors
found during integration test were probably only 70% of the total number of original

errors. Thus, we would expect an additional 21-22 errors in the code.

The characteristics of the seeded errors that escaped detection were then analyzed and

new integration tests were devised to detect those types of errors.

e. Effectiveness. Error seeding can be a reasonably effective technique to assess the
adequacy of a set of software tests. The accuracy of the prediction of remaining errors

is probably closely related to the realistic distribution of seeded error types and locations.

In most cases, the error seeding process should be considered an indicator of remaining

errors, not a precise predictor.

f. Applicability. Error seeding is applicable to any type of software in which the

presence of residual errors after testing would be intolerable. The more critical the

application of the software, the more extensive the application of error seeding. This
technique is applicable at the end of unit test, module test, integration test, and, less
likely, system test phases. Since error seeding can provide test coverage assessment, it

can be applied throughout the testing phases at the discretion of the user.

g. Maturity. Error seeding is a fairly mature theory, though it has not been applied

widely as a standard procedure throughout the software development community.

h. User Training. No special knowledge is necessary to implement this technique.

i. Costs. Since the technique requires both test personnel and computer resources to test
for the seeded errors after the basic testing is complete, plus follow-on analysis of the
test results by the personnel who did the seeding, the cost of the technique would be

significant,

It seems unlikely at present that a significant portion of the error seeding technique could
be automated, since human judgment is required in most steps of the technique. When
expert system techniques become more cost effective, the error seeding approach may be

a candidate for automation.

- .\.

A S T S S g

j- References.

(GIL77) (MIL72) (GAN 79)
(HEI82) (MYE79)
(LAP74) (RUD77)

4.3.2.5 Real-Time Testing

Real-time testing may involve testing on "host" computers using environment simulators
or testing of the software on the "target” computer in the actual hardware/software
system or a simulation of the actual system.

Real-time testing on a host computer may be augmented by the use of a testbed. A
testbed is a computer-based test environment used to test a component of software. This
test environment simulates the environment under which the software will normally
operate. A testbed permits full control of inputs and computer characteristics, allows
processing of intermediate outputs without destroying simulated execution time, and
allows full test repeatability and diagnostics. To be effective, the controlied circum-
stances of the testbed must truly represent the behavior of the system of which the

software is a part.

In a similar way, real-time testing can be implemented by using the target computer in an
artificial "real world". This "real world" is constructed by installing the target computer
in a configuration that includes as much of the actual interfacing subsystem hardware as
possible. The remainder of the real environment is simulated by one or more computers.
This entire configuration is called an "environment simulator,"” and it has the same goals
as a testbed: to provide the most realistic environment in which to test the real-time
performance of the software on the embedded computer.

a. Information Input. The information input is the input signals characteristic of the real

environment presented in a realistic time sequence. These signals may be generated by
the actual interfacing equipment, or by external computers simulating the action of that
equipment.

b. Information Qutput. The information output is the results observed through execution

of the software. This information is used as a preliminary means of determining whether

PRI TN T pe—p——

T I T PP

the software will operate as intended in its real environment when that real environment

is not available. Timing problems and logic problems, may be exposed.

c. Outline of Method. Both methods unique to the real-time environment provide an ’

environment in which to monitor the operation of software prior to installation in a real
system. To be of value, this environment must realistically reflect those properties of the

system which will affect or be affected by the operation of the software. However, the

environment should simulate only those components in the system which the software ’
requires as a minimum interface with the system. This will permit testing to focus only

on the software component for which the testbed is built.

Testbeds are built through the consideration of and proper balance between three major). o
factors: : e 5
. The amount of realism required by the testbed to properly reflect the operation of - >
system properties. .t »
. Resources available to build the testbed. ; N 2 :
. The ability of the testbed to focus only on the software being tested. v

Testbeds come in many forms, depending on the level of testing desired. For single
module testing, a testbed may consist merely of test data and a test driver or test
harness. A test driver or test harness is a program which feeds input data to the program
module being tested, causes the module to be executed, and collects the output generated
during the program execution. If a completed, but non-final version of software is to be
tested, the testbed may also include stubs. A stub is a dummy routine that simulates the
operation of a module that is invoked within a test. Stubs can be as simple as routines
that automatically return on a call, or they can be more complicated and return simulated
results. The final version of the software may be linked with other software subsystems
in a larger total system. The testbed for one component in the system may consist of

those system components which directly interface with the component being tested.

As illustrated in the above examples, testbeds permit the testing of a component of a

system without requiring the availability of the full, complete system. They merely
supply the inputs required by the software component to be executed and provide a

repository for outputs to be placed for analysis. In addition, testbeds may contain

LRI S Sl el T TR ——— PR S A b M A AMCAMI Sl el i YN e e — —
D PN . ARG i R N N A

monitoring devices which collect and display intermediate outputs during program
execution. In this way, testbeds provide the means of observing the operation of software
as a component of a system without requiring the availability of other system compon-
ents, which may be unreliable,

d. Example. An airborne tracking system must be able to process a given rate of radar
return messages, apply the required tracking algorithms, and control the displays to radar
operators on board the surveillance aircraft. Since actual flight time is prohibitively
expensive for all testing, a real time simulator test bed is constructed to simulate the
radar and other subsystems with which the airborne operational computer program must

perform.

To simulate the environment, a second computer is programmed to provide the radar
return messages in real time, and to, in general, simulate the actual environment that the
on-board computer would see in the air during a mission. This program in the second
computer is the test driver software, and the second computer is called the environment
simulator. The second computer also records the outputs of the operational computer
program for later analysis. To completely simulate the environment, the environment
simulator may also consist of other airborne hardware programmed to present a realistic

interface to the operational software being tested.

The test driver then dumps the recorded information from the output file onto a hardcopy
device so the output can be analyzed and verified for correctness. It is also possible,
when the volume of output data is large, that post-processing software could be written to
analyze the test results.

e. Effectiveness. The use of testbeds has proven to be a highly effective and widely used
technique to test the operation of software. The use of test drivers or test harnesses, in
particular, is one of the most widely used testing techniques. This technique is able to

detect a wide range of errors.

f. Applicability. This method is applicable from PQT/FQT through mission test, and for
all types of computing applications.

g. Maturity. This technique is widely used and is highly mature.

h. User Training. In order to build an effective testbed, it is necessary to develop a solid
understanding of the software and its dynamic operation in a system. This understanding
should aid in determining what parts of the testbed deserve the most attention during its
construction. In addition, knowledge of the dynamic nature of a program in a system is
required in gathering useful intermediate outputs during program execution and in

properly examining these results.

i. Cost. The amount of realism desired in a testbed will be the largest factor affecting
. cost. Building a realistic testbed may require the purchasing of new hardware and the
development of additional software in order to properly simulate an entire system. In

|) addition, these added resources may be so specialized that they may seldom, if ever, be
E used again in other applications. In this way, very sophisticated testbeds may not prove to

be highly cost-effective.

j. References,
(HAR 71)
(PAN 78)

4.3.3 Symbolic Testing

Symbolic testing involves the execution of a program from a symbolic point of view.
Symbolic testing is applied to programs paths. It can be used to generate expressions
which describe the cumulative effect of the computations which occur in a program path.
It can also be used to generate a system of predicates which describes the subset of the
input domain which causes a specified path to be traversed. The user is expected to
verify the correctness of the output which is generated by symbolic execution in the same
way that output is verified which has been generated by executing a program over actual
values.

a. Information Input. The inputs to this technique are as follows:

Source code. This method requires the availability of the program source code.
Program paths. The path or paths through the program which are to be symbolically

evaluated must be specified. The paths may be specified directly by the user or, in some

symbolic evaluation systems, selected automatically.

4-120

T —— P —— A S A A b PSSR S e

S N N T L S SR N R R T N I S R S T N T - -

Input values. Symbolic values must be assigned to each of the "input" variables for the
path or paths which are to be symbolically evaluated. The user may be responsible for
selecting these values or the symbolic evaluation system that is used may select them

; automatically.

‘a
»
-
-
e
-
I
e
’
h
»
S
'
v,
K
9

b. Information Output. The outputs of this technique are as follows:

Values of variables. The variailes whose final symbolic values are of interest must be
specified. Symbolic execution will result in the generation of expressions which describe
the values of these variables in terms of the dummy symbolic values assigned to input

variables.

System of predicates. Each of the branch-predicates which occur along a program path
constrains the input which causes that 'path to be followed. The symbolically evaluated
system of predicates for a path describes the subset of the input domain that causes that
path to be followed.

c. Outline of Method. The symbolic execution of a path is carried out by symbolically

[Ne Al un Aon Sk o
O e T

executing the sequence of assignment statements occurring in the path. Assignment

statements are symbolically executed by symbolically evaluating the expressions on the

right hand side of the assignment. The resulting symbolic value becomes the new

symbolic value of the variable on the left hand side. An arithmetic or logical expression

is symbolically executed by substituting the symbolic values of the variables in the

expression for the variables.

The branch conditions or branch predicates which occur in conditional branching state-

ments can be symbolically executed to form symbolic predicates. The symbolic system of

predicates for a path can be constructed by symbolically executing both assignment

statements and branch predicates during the symbolic execution of the path. The

symbolic system of predicates consists of the sequences of symbolic predicates that are

generated by the execution of the branch predicates.

Symbolic execution systems are used to facilitate symbolic execution. All symbolic

execution systems must contain facilities for (1) selecting program paths to be symbolic-

ally executed, (2) symbolically executing paths, and (3) generating the required symbolic

output.

W

P ne oy o

Three types of path selection techniques have been used: interactive, static and
automatic. In the interactive approach, the symbolic execution system is constructed so
that control returns to the user each time it is necessary to make a decision as to which
branch to take during the symbolic execution of a program. In the static approach the
user specifies the paths he wants executed in advance. In the automatic approach the
symbolic execution system attempts to execute all those program paths having a
consistent symbolic system of predicates. A system of predicates is consistent if it has a

solution.

The details of symbolic execution algorithms in different systems are largely technical.
Symbolic execution systems may differ in other than technical details in the types cf
symbolic output they generate. Some systems contain, for example, facilities for solving
systems of branch predicates. Such systems are capable of automatically generating test
data for selected program paths (i.e., program input data which will cause the path to be

followed when the program is executed over that data).

d. Example. An example of symbolic execution follows:

Application. A FORTRAN program called SIN was written to compute the sine function

using the McLaurin series.

Errors. The program contained three errors including an uninitialized variable, the use of
the expression -1%**(1/2) instead of (-1)**(1/2), and the failure to add the last term

computed in the series on to the final computed sum.

Different paths through SIN correspond to different numbers of iterations of the loop in
the program that is used to compute terms in the series. The symbolic output in the
following figure was generated by symbolically evaluating the path that involves exactly

three interations of the loop.

PREDICATES:
(X**3/6).GE.E
(X**5/120).GE.E
(X**7/5040).LT.E

4-122

OUTPUT:
SIN = ?SUM = (X*#*3/6) - (X**5/120)
Symbolic output for SIN

Error discovery. The errors in the program are discovered by comparing the symbolic
output with the standard formula for the McLaurin series. The symbolic evaluator that
was used to generate the output represents the values of variables that have been
uninitialized with a question mark and the name of the variable. The error involving the
expression (-1)**(1/2) results in the generation of the same rather than alternating signs
in the series sum. The failure to use the last computed term can be detected by
comparing the predicates for the symbolically evaluated path with the symbolic output
value for SIN.

e. Effectiveness. Studies have been carried out which indicate that symbolic evaluation
is useful for discovering a variety of errors. This technique is most effective in detecting
computation errors but also detects logic errors and data handling errors. This technique

is also very effective in assisting in the development of test data.

One of the primary uses of symbolic evaluation is in raising the confidence level of a user
in a program. Correct symbolic output expressions confirm to the user that the code

carries out the desired computations.

f. Applicability. This method is primarily useful for programs written in languages which
involve operations that can be represented in a concise formal way. Most of the symbolic
evaluation systems that have been built are for use with algebraic programming languages
such as Fortran and PL/1. Algebraic programs involve computations that can be easily
represented using arithmetic expressions. It is difficult to generate symbolic output from
programs which involve complex operations with "wordy" representations such as the
REPLACE and MOVE CORRESPONDING operations in Cobol.

Symbolic execution is most feasible when used with small segments of code. The degree
of detail required in its application limits the effectiveness of the technique in testing
large scale programs. This technique is applicable during algorithm confirmation, design

verification, unit, and module test phases.

N AT T e TR T N T T N Y R T T e —_—

g. Maturity. Symbolic evaluation and associated symbolic evaluation systems are in the
developmental/experimental phases. Their use requires knowledge of specialized skills.
Current tools do not remove enough of the mechanical burden from the user to allow

widespread use of the technique.

h. User Training. It takes a certain amount of practice to choose paths and parts of paths
for symbolic evaluation. The user must avoid the selection of long paths or parts of paths

I that result in the generation of expressions that are so large that they are unreadable. If

the symbolic evaluation system being used gives the user control over the types of
expression simplification that is carried out, then he must learn to use this in a way that

results in the generation of the most revealing expressions.

i. Costs. Storage and execution time costs for symbolic evaluation have been calculated
in terms of program size, path length, number of program variables and the cost of
interpreting (rather than compiling and executing) a program path. The storage required
l for symbolically evaluating a path of length P in a program with S statements containing
N variables is estimated to be on the order of 10(P+S+N) (HOW). Let Cl be the length of
a program path, let C2 be the average cost of interpreting a statement in a program path,
Exp be the cost of symbolically evaluating a function, Cons be the cost of checking the
consistency (i.e., solvability) of a system of symbolic predicates and Cond be the cost of

T e

evaluating a condition in a conditional statement. Cons and Cond are expressed in units

of the cost of interpreting a statement in a program. The cost (in execution time) of

symbolically executing a program path is estimated to be on the order of C1 * C2(2 + Exp
i + Cons/10 + Cond/100) (HOW).

jo References.

_ (HOW 78A) (HEI 82) (CLA 78)
4 (HOW) (CLA 76)
4.3.4 Formal Analysis
»
) The purpose of formal analysis is to apply the formality and rigor of mathematics to the

task of proving the consistency between an algorithmic solution and a rigorous, complete

specification of the intent of the solution.

. e ey

. RASN
. =8 Na" -

- ..-.\.'s ~ A, - LI AT

F SR o AP R Ry L S TR A

)
]

R
%

CAA
PR RN GENN

j.‘-ir

a. Information Input. The two inputs required are the solution specification and the

intent specification. The solution specification is algorithmic in form, and is often but
not always, executable code. The intent specification is descriptive in form, invariably
consisting of assertions, usually expressed in Predicate Calculus.

Additional inputs may be required depending upon the rigor and specific mechanisms to be
employed in the consistency proof. For example, the semantics of the language used to
express the solution specification are required and must be supplied to a degree of rigor
consistent with the rigor of the proof being attempted. Similiarly, simplification rules
and rules of inference may be required as input if the proof process is to be completely

rigorous.

b. Information Output. The proof process may terminate with a successfully completed

proof of consistency, or a demonstration of inconsistency, or it may terminate inconclu-
sively. In the former two cases, the proofs themselves and the proven conclusion are the
outputs. In the latter case, any fragmentary chains of successfully proven reasoning are
the only meaningful output. Their significance is, as expected, highly variable.

c. Qutline of Method. The usual method used in carrying out formal verification is

Floyd's Method of Inductive Assertions ¢r a variant thereof. This method entails the
paritioning of the solution specification into algorithmically straightline fragments by
means of strategically placed assertions. This partioning reduces the proof of consistency
to the proof of a set of smaller, generally much more manageable lemmas.

Floyd's method dictates that the intent of the solution specification be captured by two
assertions - the input assertion, describing the assumptions about the input, and the output
assertion describing the transformation of the input which is intended to be the result of
the execution of the specified solution. In addition, intermediate assertions must be
fashioned and placed within the body of the solution specification in such a way that every
loop in the solution specification contains at least one intermediate assertion. Each such
intermediate assertion must express completely the transformations which are intended to
have occurred or be occurring at the point of placement of the assertion. The purpose of
placing the assertions as just described is to assure that every possible program execution
is decomposable into a sequence of straightline algorithmic specifications, each of which
is bounded on either end by an assertion. If it is known that each terminating assertion is

4-125

N Lt
SRR J'.‘-'

_ e -
- JA‘_“. !- I. J.

necessarily implied by executing the specified algorithm under the conditions of the initial
assertion, then, by induction it can be shown that entire exeuction behaves as specified by
the input/output assertions, and hence as intended. In order for the user to be assured of
this, Floyd's Method directs that a set of lemmas be proven. This set consists of one
lemma for each pair of assertions which is separated by a straightline algorithmic
specification and no intervening other assertion. For such an assertion pair, the lemma
states that, under the assumed conditions of the initial assertion, execution of the
algorithm specified by the intervening code necessarily implied the conditions of the
terminating assertion. Proving all such lemmas establishes what is known as "partial
correctness." Partial correctness establishes that whenever the specified solution process
terminates, it has behaved as intended. Total correctness is established by, in addition,
proving that the specified solution process must always terminate. This is clearly an
undecidable question, being equivalent to the Halting Problem, and hence its resolution is

invariably approached through the application of heuristics.

In the above procedure, the pivotal capability is clearly the ability to prove the various
specified lemmas. This can be done to varying degrees of rigor, resulting in proofs of
corresponding varied degrees of reliability and trustworthiness. For the greatest degree
of trustworthiness, solution specification, intent specification, and rules of reasoning must
all be specified with complete rigor and precision. The principal difficulty here lies in
specifying the solution with complete rigor and precision. This entails specifying the
semantics of the specification language, and the functioning of any actual execution
environment with complete rigor and precision. Such complete details are often difficult
or impossible to adduce. They are moreover, when available, generally quite voluminous

thereby occasioning the need to prove lemmas which are long and intricate.

d. Example. As an example of what is entailed in a rigorous formal verification activity,
consider the specification of a bubble sort procedure. (The details of this can be found in
GOOQO75). The intent of the bubble sort must first be captured by an input/output assertion
pair. Next, observing that the bubble solution algorithm contains two nested loops, leads
to the conclusion that two additional intermediate assertions might be fashioned, or
perhaps one particularly well placed assertion might suffice. In the former case, up to 8
lemmas would then need to be established; one corresponding to each of the (possible two)
paths from the initial to each intermediate assertion, one corresponding to each of the

two paths from an intermediate assertion back to itself, one for each of the (possibly two)

™!

» o
3 e

paths from one intermediate assertion to the other, and finally one for each of the
(possibly two) paths from intermediate to terminating assertion. Each lemma would have
to be established through rigorous mathematical logic (GOO75). Finally, a proof of
necessary termination would need to be fashioned (GOO75).

e. Effectiveness. The effectiveness of formal verification has been attacked on several
grounds. First and most fundamentally, formal verification can only establish consistency
between intent and solution specification. Hence, inconsistency can indicate error in
either or both. The same can be said for most other test techniques, however. What
makes this particularly damaging for formal verification is that complete rigor and detail
in the intent specification are important, and this requirement for great detail invites

error.

The amount of detail also occasions the need for large, complex lemmas. These,
especially when proven using complex, detailed rules of inference, produce very large,
intricate proofs which are highly prone to error. Complicating this further is the fact
that these proofs are generally attempted using the First Order Predicate Calculus. The
incompleteness of this mathematical system implies that incorrect theorems cannot be
expected to ever be reduced to obvious absurdities. Thus, the prover may, after an
arbitrarily long period of unsuccessful effort, not know whether the lemma in question is

correct or not.

Finally, formal verification of actual programs is further complicated by the necessity,
yet extreme difficulty of rigorously expressing the execution behavior of the actual
computing environment which will execute the program. As a consequence of this, the
execution environment is generally modelled incompletely and inperfectly, thereby

restricting the validity of the proofs in ways which are difficult to determine.

Despite these difficulties, a correctly proven set of lemmas establishing consistency
between a complete specification and a solution specification whose semantics are
accurately known and expressed, conveys the greatest assurances of correctness obtain-
able. This ideal of assurance seems best attainable by applying automated theorem

provers to design specifications, rather than code.

This technique detects computation and logic errors.

T r—~—r— - BRI AT A e YV T v

-

f. Applicability. Formal verification is a technique which can be applied to determine
the consistency between any algorithmic solution specification and any intent
specification. As elaborated upon earlier, the trustworthiness of the results is highly
variable depending primarily upon the rigor with which the specifications are expressed
and the proofs are carried out. This technique is applicable during the algorithm

confirmation or design verification test phases.

bt
[1

W

g. Maturity. Formal analysis is still in the research and development phases.

[

L h. User Training. As noted, the essence of this technique is mathematical. Thus, the o

[more mathematical sophistication and expertise which practitioners possess, the better. -

k In particular, a considerable amount of mathematical training and expertise are necessary >. @ _

5 in order for the results of applying this technique to be significantly reliable or

E’ trustworthy.

, . o . . ' .
i. Costs. This technique, when seriously applied must be expected to consume very

significant amounts of the time and effort of highly trained mathematically proficient

personnel. Hence, considerable human-labor expense must be expected.

As noted earlier, human effectiveness can be considerably improved through the use of
automated tools such as thereom provers. It is important to observe, however, that such

tools can be prodigious consumers of computer resources. Hence, their operational costs
are also quite large.

j. References.
(ELS 72)
(FLO 67)
(GO0 75)

4.4 SUPPORT TECHNIQUES

This section contains descriptions of support techniques. Support techniques facilitate the

- software testing process; they do not have the capability of detecting specific types of
errors when used alone.

4-128

4.5.1 Test Data Generators

Test data generators are tools that generate test data to exercise a target program.
These tools may generate data through analysis of the program to be tested or through
analysis of the expected input in its normal operating environment. Test data generators
may use numerical integrators and random number generators to create the data.
References: (CLA76) (HOW75) (MIL75) (NAF72).

4.4.2 Test Result Analyzers

Test result analyzers are used in situations where the software cannot be analyzed
completely as it is being tested. Typically, output data resulting from execution are
written on tape or disk and later analyzed by the software test result analyzer. An
example of the need for such postprocessing is the testing of a real-time computer
program that must write a history tape of the mission. When run in a simulator, it may be
impossible to check the history tape while the simulation test is being run. After the test,
a test result analyzer program would read and analyze the history tape to ensure that it
was written in the required format and that it correctly recorded the history of the
simulated mission. Another example of a test result analyzer is the comparison of the

actual results of execution with the expected results. Reference: (PAN78).

4.4.3 Test Management Software

This support software performs a configuration management function by creating a
program test library containing the records of all tests, including the test software, test
data, software version numbers, and corresponding test results. Such software permits
more precise control and recording of the tests and may be appropriate for testing very

large computer programs.

4.4.4 Test Completion Criteria Software

This support software uses statistical or reliability prediction techniques in conjunction
with user-specified criteria on such factors as cost, desired software product reliability,

schedule, and other factors to help determine reasonable test completion criteria. Such

software usually incorporates some of the test completion criteria discussed in section

4-129

8

P —— A P e === e~ segy et~y

2.7, especially those in approach 4 of that section. Most of this software should be used in

an advisory capacity, since the algorithms used are not rigorous.

4.4.5 Test Drivers and Test Harnesses

Test drivers provide the facilities needed to execute a program (e.g., inputs or files, and

commands). The input data files for the system must be loaded with data values

representing the test situation or events to yield recorded data to evaluate against

expected results. Test drivers permit generation of data in external form to be entered A 7

automatically into the system at the proper time.

Test harnesses are more generalized test drivers. Test harnesses install the software to e °

be tested in a "test environment," insert stubs to simulate the behavior of missing

modules, and provide input data. Some test harnesses are programmable so that they can
be tailored by the user to test many kinds of software. Test harnesses usually provide a
more complete environment than a test driver, although the distinction between the two

is sometimes blurred. Reference: (PAN73).

4.4.6 Comparators

A comparator is a computer program used to compare two versions of source data to
determine whether the two versions are identical or to specifically identify where any
differences in the versions occur. Comparators are most effective during software
testing and maintenance when periodic modifications to the software are anticipated.
References: (HET73) (DEC78).

4.5 MISCELLANEOUS TESTING METHODS

The miscellaneous testing methods described in this section have not been included in the
test technique taxonomy. Requirements tracing and requirements analysis are beyond the
scope of the taxonomy since these techniques facilitate the front-end of the software life

cycle. Regression testing is a method of testing that utilizes test techniques from the

taxonomy as a means to detect spurious errors resulting from software modifications.

4-130

T P o a———
- . L N T TS N P

R N AR

4.5.1 Requirements Tracing.
Requirements tracing provides a means by which to verify that the software of a system
addresses each requirement of that system and that the testing of the software produces

adequate and appropriate responses to those requirements.

a. Information Input. The information needed to perform requirements tracing consists

of a set of system requirements and the software which embodies capability to satisfy the

requirements.

b. Information Output. The information output by requirements tracers is the corres- T ‘. Lo

pondence found between the requirements of a system and the software that is intended ; o |
to realize these requirements. : L
c. Outline of Method. Requirements tracing generally serves two major purposes. The : 3
first is to ensure that each specified requirement of a system is addressed by an iw.“:

identifiable element of the system software. The second is to ensure that the testing of

that software produces results which are adequate responses in satisfying each of these

requirements. :.: .)

A common technique used to assist in making these assurances is the use of test
evaluation matrices. These matrices represent a visual scheme of identifying which

requirements of a system have been adequately and appropriately addressed and which

have not. There are two basic forms of test evaluation matrices. The first form
identifies a mapping that exists between the requirement specifications of a system and
the modules of that system. This matrix determines whether each requirement is realized
by some module in the system, and conversely, whether each module is directly associated
with a specific system requirement. If the matrix reveals that a requirement is not
addressed by any module, then that requirement has probably been overlooked in the
software design activity. If a module does not correspond to any requirement of the
system, then that module is superfluous to the system. In either case, the design of the
software must be further scrutinized, and the system must be modified accordingly to

effect an acceptable requirements-design mapping.

4-131

e v > " T— T e e e g T

The second form of a test evaluation matrix provides a similar mapping, except the
mapping exists between the modules of a system and the set of test cases performed on
the system. This matrix determines which modules are invoked by each test case. Used
with the previous matrix, it also determines which requirements will be demonstrated to
be satisfied by the execution of a particular test case in the test plan. During actual code
development, it can be used to determine which requirement specifications will relate to
a particular module. In this way, it is possible to have each module print out a message
during execution of a test indicating which requirement is referenced by the execution of
this module. The code module itseif may also contain comments about the applicable

requirements.

[f these matrices are to be used most effectively in a requirements tracing activity, the
two matrices should be used together. The second matrix is built prior to software
development. After the software has been developed and the test cases have been
designed (based upon this matrix), it is necessary to determine whether the execution of
the test plan will actually demonstrate satisfaction of the requirements of the software
system. By analyzing the results of each test case, the first matrix can be constructed to

determine the relationship that exists between the requirements and software reality.

The first matrix is mainly useful for analyzing the functional requirements of a system.
However, the second matrix is also useful in analyzing the performance, interface, and
design requirements of the system, in addition to the functional requirements. Both are
often used in support of a more general requirements tracing activity, that of preliminary
and critical design reviews. This is a procedure use” to ensure verification of the
traceability of all the above-mentioned requirements to the design of the system. In
addition to the use of test evaluation matrices, these design reviews may include the
tracing of individual subdivisions in the software design document back to applicable
specifications made in the requirements document. This is a constructive technique used

to ensure verification of requirements traceability.

d. Example.
. Application. A new payroll system is to be tested. Among the requirements of this

system is the specification that all employees of age 65 or older—
. Receive semi-retirement benefits.

. Have their social security tax rate readjusted.

Ay e s

v ooy

To ensure that these particular requirements are appropriately addressed in the
system software, test evaluation matrices have been constructed and filled out for
the system.

. Error. An omission in the software causes the social security tax rate of individuals
of age 65 or older to remain unchanged.

. Error discovery. The test evaluation matrices reveal that the requirement that
employees of age 65 or older have their social security tax rate adjusted has not
been addressed by the payroll program. No module in the system had been designed
to respond to this specification. The software is revised accordingly to accom-
modate this requirement, and a test evaluation matrix is used to ensure that the

added module is tested in the set of test cases for the system.

e. Effectiveness. Requirements tracing is a highly effective technique in discovering
errors during the design and coding phases of software development. This technique has
proven to be a valuable aid in verifying the completeness, consistency, and testability of
software. If a system requirement is modified, it also provides much assistance in
retesting software by clearly indicating which modules must be rewritten and retested.
Requirements tracing can be a very effective technique in detecting errors early in the
software development cycle which could otherwise prove to be very expensive if

discovered later.

f. Applicability. This technique is generally applicable in large or small system testing
and for all types of computing applications during the design and code phases. However,
if the system requirements themselves are not clearly specified and documented, proper
requirements tracing can be very difficult to accomplish in any application.

g- Maturity. Requirements tracing is a highly mature technique; it is widely used and has
proven to be effective.

h. User Training. Knowledge and a clear understanding of the requirements of the system

is essential. More complex systems will result in a corresponding increase in required

learning.

4-133

‘.
K

Y s
R . :
PR

G S P ST
PP IR)

,.\.,
e

Ay

et
DR

MR N]
.

|
0

i. Costs. No special tools or equipment are needed to carry out this technique. The

major cost in requirements tracing is that associated with human labor expended.

j» References.
(HET 76)
(THR 75)

4.5.2 Requirements Analysis.

The requirements for a system will normally be specified using some formal language
which may be graphical and/or textual in nature. Requirements analysis checks for
syntactical errors in the requirements specifications and then produces a useful analysis
of the relationships between system inputs, outputs, processes, and data. Logical
inconsistencies or ambiguities in the specifications can also be identified by requirements

analysis.

a. Information Input. The form and content of the input will vary greatly for different

requirements languages. Generally, there will be requirements regarding what the system
must produce (outputs) and what types of inputs it must accept. There will usually be
specifications describing the types of processes or functions which the system must apply
to the inputs in order to produce the outputs. Additional requirements may concern
timing and volume of inputs, outputs, and processes as well as performance measures
regarding such things as response time and reliability of operations. The form of the
inputs to requirements analysis is specified by the requirements specification language
and varies considerably for different languages. In some cases all inputs are textual,
whereas some languages utilize all graphical inputs from a display terminal (e.g., boxes

might represent processes and arrows between boxes might represent information flow).

b. Information Output. Nearly all analysis produces error reports showing syntactical

errors or inconsistencies in the specifications. For example, the syntax may require that
the outputs from a process at one level of system decomposition must include all outputs
from a decomposition of that process at a more detailed level. Similarly, for each system
output there should be a process which produces that output. Any deviations from these

rules would result in error diagnostics.

-y
: 1.,' ‘*..' K

Tt
ool 7

..
ey

-y

-y
."t ’

CRE I L AR

Each requirements analysis produces a representation of the system which indicates static
relationships among system inputs, outputs, processes, and data. The analysis also
represents dynamic relationships and provides an analysis of them. This may be a
precedence relationship, e.g., process A must execute before process B. It may also
include information regarding how often a given process must execute in order to produce
the volume of output required. This technique produces a detailed representation of
relationships between different data items. This output can sometimes be used for
developing a data base for the system. Requirements analysis goes even further and
provides a mechanism for simulating the requirements using the generated system

representation including the performance and timing requirements.

c. Outline of Method. The user must provide the requirements specifications as input for

the analysis. The analysis is carried out in an automated manner and provides it to the
user who must then interpret the results. Often the user can request selected types of
outputs, e.g., an alphabetical list of all the processes or a list of all the data items of a
given type. This analysis can be implemented either interactively or in a batch mode.
Once the requirements specifications are considered acceptable, requirements analysis
provides the capability for simulating the requirements. It is necessary that the data
structure and data values generated from the requirements specifications be used as input

to the simulation, otherwise the simulation may not truly represent the requirements.

d. Example. Suppose that a process called PROCESS B produces two files named H2 and
H3 from an input file named M2. (The purposes of the files are irrelevant to the
discussion.) Suppose also that PROCESS D accepts Files H2 and H3 as input and produces
Files J3 and J6 output. In addition, PROCESS G is a subprocess of PROCESS D and it
accepts File H3 as input and produces File J6. Then the following pseudo specification
statements might be used to describe the requirements. (Note that these requirements
are close to design, but this is often the case.)

i A e e o e e e s e e e E e e e e

PROCESS B

-

USES FILE M2
PRODUCES FILES H2, H3

PROCESS D

USES FILES H2, H3
PRODUCES FILES 13, 76

PROCESS G
: :
SUBPE.IOCESS OF PROCESS D
USES FILE H3
PRODUCES FILE 36
’! The requirements specification imply a certain precedence of operations, e.g.,
PROCESS D cannot execute until PROCESS B has produced files H2 and H3. Detailed
descriptions of what each process does would normally be included, but are omitted for
._ brevity. Requirements analysis would probably generate a diagnostic since the statement
i for PROCESS D fails to indicate that it includes the subprocess G. A diagnostic would
- also be generated unless there are other statements which specify that file M2, needed by
y PROCESS B, is available as an existing file or else is produced by some other process.
Similarly, other processes must be specified which use files 33 and J6 as input unless they
I are specified as files to be output from the system. Otherwise, additional diagnostics
would be generated. It can be seen that some of the checks are similar to data flow
analysis for a computer program. However, for large systems the analysis of require-
: ments becomes very complex if requirements for timing and performance are included,
» and if timing and volume analysis are to be carried out. (Volume analysis is concerned
- with such things as how often various processes must execute if the system is to accept
and/or produce a specified volume of data in a single given period of time.)
i e. Effectiveness. Requirements analysis is very effective for maintaining accurate
" requirements specifications. For large systems with a large number of requirements it is
- essential. On the other hand, most existing requirements analysis tools are rather
expensive to obtain and use, and they may not be cost effective for development of small
; systems.
. : 4-136
.

N and oos 0 }
s

f. Applicability. Requirements analysis is applicable for use in developing most systems.
It is particularly useful for analysis of requirements for large and complex systems.

i g. Maturity. Requirements analysis is generally used on large, complex systems as
opposed to small systems.

h. User Training. Requirements analysis generally require a considerable amount of
l training of personnel.

i. Cost. Most requirements analysis tools are expensive to obtain and use. They
generally require a large amount of storage within a computer and so can only be used on

large computers.
. j- References.
B (ALF 76)
L (TEI 72)

4.5.3 Regression Testing.

Regression testing is a technique that detects spurious errors caused by software

modifications or corrections.

. - ..
O] I
o] R .

a. Information Input. Regression testing requires that a set of software test cases be

maintained and available throughout the entire life of the software. The test cases should

be complete enough so that all of the software's functional capabilities are thoroughly
tested. If available, acceptance tests should be used to form the base set of tests.

» In addition to the individual test cases themselves, detailed descriptions or samples of the

actual expected output produced by each test case must also be supplied and maintained.

b. Information Output. The output from regression testing is simply the output produced

D by the software from the execution of each of the individual test cases.

c. Qutline of Method. Regression testing is the process of retesting software in order to

detect errors which may have been caused by program changes. The technique requires

. 4-137

| &

oo
et

*

'FAC.'..""

v ——T " T—— T i ——_—— T e P —

the utilization of a set of test cases which have been developed (ideally, using functional
testing sec. 4.3.2.3) to test all of the software's functional capabilities. If an absolute
determination of those portions of the software that can potentially be affected by a
given change can be made, then only those portions need to be tested. Associated with
each test case is a description or sample of the correct output for that test case. When
the tests have been executed, the actual output is compared with the expected output for
correctness. As errors are detected during the actual operation of the software which
were not detected by regression testing, a test case which could have uncovered the error

should be constructed and included with the existing test cases.

Although not required, tools can be used to aid in performing regression testing.
Automatic test harnesses can be used to assist the managing of test cases and in
controlling the test execution. File comparators can often be useful in verifying actual
output with expected output. Assertion processors are also useful in verifying the

correctness of the output for a given test.

d. Example. An example of regression testing is given as follows.

Application. A transaction processing system contains a dynamic data field editor which
provides a variety of input/output field editing capabilities. Each transaction is
comprised of data fields as specified by a data element dictionary entry. The input and
output edit routine used by each data field is specified by a fixed identifier contained in a
data field descriptor in the dictionary entry. When a transaction is input, each field is
edited by the appropriate input editor routine as specified in the dictionary entry. Output

editing consists of utilizing output editor routines to format the output.

Error. An input edit routine to edit numeric data fields was moditfied to perform a fairly
restrictive range check needed by a particular transaction program. Current system
documentation indicated that this particular edit routine was only being used by that
single transaction program. However, the documentation was not up-to-date in that
another, highly critical, transaction program also used the routine, often with data falling

outside of the range check needed by the other program.

Error discovery. Regression testing would uncover the error given that a sufficient set of

functional tests were used for performing the testing. If only the transaction program for

wvy .

-,
ST e

e \ e et B Mot satk mall samk-aSEtoan oo e - g r
R - ‘...“,“,._‘-_‘ AEREREE YA SRR RN S e T) R Sty P e e

which the modification was made was tested, the error would not have been discovered

until actual operation.

e. Effectiveness. The effectiveness of the technique depends upon the quality of the data
used for performing the regression testing. If functional testing is used to create the test
data the effectiveness will be that of functional testing (highly effective). The burden
and expense associated with the technique, particularly for small changes, can appear to
be prohibitive. It is, however, often quite straightforward to determine which functions
can be potentially affected by a given change. In such cases, the extent of the testing can

be reduced to a more tractable size.
f. Applicability. This method is applicable during the unit and module test phases.
g. Maturity. Regression testing is a mature method. It is widely used.

h. User Training. No special training is required in order to apply this technique. If tools
are used in support of regression testing, however, knowledge of their use will be required.
Moreover, successful application of the technique will require establishment of procedures

and the management control necessary to ensure adherence to those procedures.

i. Costs. Since testing is required as a result of software modifications anyway, no
additional burden need result because of the method (assuming that only the necessary
functional capabilities are retested). The use of tools, however, to support it could
increase the cost but it would also increase its effectiveness.

jo References.
(PAN 738)

4-139

4.6 BIBLIOGRAPHY

: (ADA79)
: (ADRSI)
- (AHO74)
g

(AHO7?77)
»

(AIR78)
.
- (ALF76)
:
‘F.-
i
(ALF79)
F (ALL76)
:
'
[’..
- (ARES0)
P

"Ada Environment Workshop." Sponsored by DoD High Order Language
Working Group, November 27-29, 1979, San Diego.

Adrion, W. R., M. A. Branstad, and J. C. Cherniavsky. "Validation, Verifica-
tion and Testing of Computer Software." NBS Special Publication 500-75,
Superintendent of Documents, U.S. Documents, U.S. Govt. Printing Office,
Wash, D.C., February 1981.

Aho, A.V., J.E. Hopcroft, and J.D. Ullman. 1rhe Design and Analysis of

Computer Algorithms. Addison-Wesley, Reading, Mass., 1974.

Aho, A.V. and J.D. Ullman. Principles of Compiler Design. Addison-Wesley,
1977.

"Airborne Systems Software Acquisition Engineering Guidebook for Verifica-
tion, Validation, and Certification", Air Force document, ASD-TR-79-5028,
1978.

Alford, M. W. "A Requirements Engineering Methodology for Real-Time
Processing Requirements," TRW Software Series, TRW-S85-76-07, Systems

Engineering and Integration Division, Sept., 1976.

Alford, M. A. "Theoretical Foundations of Toolsmithing." Proceedings of
COMPSAC 79, IEEE Catalog No. 79CH1515-6C, November 1979.

Allen, F.E. and J. Cocke. "A Program Data Flow Analysis Procedure", CACM,
Vol. 19, No. 3, March 1976.

"A Review of Software Maintenance Technology.” (RADC TR-80-13) dtd Feb
80. Available from the U.S. Dept. of Commerce, National Technical Informa-
tion service, 5285 Port Royal Road, Springfield, Virginia, 22151, Accession No.
A083-985.

T~ - > v Ny
MR - RTINS s e " o v

(AUT77) "Automated Data Systems Documentation Standards." Department of Defense
standard 7935.1-S, September 1977.

T e
LAl

(AUT79) "Automated Software Tools Catalog." Boeing Computer Services document p‘b' " . .
10236, 1979.

(BAR78) Barbuto, P., Jr. and J. Geller. "Tools for Top-Down Testing." Datamation,) :
Vol. 24, No. 10, October 1978, pp. 178-182. » e

(BAR80) Barry, M. "Airborne Systems Software Acquisition Engineering Guidebook for
Software Testing and Evaluation." TRW report ASD-TR-80-5023, March 1980.

’._-_ (BEL74) Bell, D.E. and J.E. Sullivan. "Further Investigations into the Complexity of

- Software”. (Tech. Rep. MTR-2874). Bedford, MA: MITRE. 1974.

b— (BEN78) Benson, J.P. and S.H. Saib. "A Software Quality Assurance Experiment", i:.«

\ Proceedings of the Software Quality and Assurance Workshop, San Diego, Nov. ;AZ_AL:
1978. i

(BEN79) Bentley, J.L. "An Introduction to Algorithm Design", Computer, Feb. 1979.

(BLA71) Blair, J. "Extendable Non-Interactive Debugging." Debugging Techniques In =
. Large Systems, Prentice-Hall, Englewood Cliffs, N.J., 1971, pp. 93-115. -

(BOE75) Boehm, B., R. McClean, and D. Urfrig. "Some Experience with Automated
Aides to the Design of Large-scale Reliable Software", IEEE Transactions of
Software Engineering, SE-1, 1975(125-133).

(BOY75) Boyer, R.S., B. Elspas, and K.N. Levitt. "SELECT-A Formal System for e
Testing and Debugging Programs by Symbolic Execution", Proceedings of the B :

International Conference on Reliability of Software, April 1975. 'tf;\ A

...........

(BRA75) Bratman, H. and T. Court. "The Software Factory." Computer, May 1975, pp. O
28-37.

..........

(BRA77)

(BRO75)

(BRO77)

(BRO78)

(BROS2)

(BROS83)

(BUL74)

(BUX80)

(CAMS81)

(CHE?79)

Bratman, H. and M. C. Finfer. "Software Acquisition Management Guidebook:
Verification." System Development Corporation report ESD-TR-77-263,
August 1977.

Brooks. The Mythical Man-Month. Addison-Wesley, 1975,

Brown. "Impact of Modern Programming Practices on System Development."
RADC-TR-77-121, 1977.

Brown, J.R. and K. Fischer. "A Graph Theoretic Approach to the Verification
of Program Structures”, Proceedings of the 3rd International Conference on

Software Engineering, May 1978.

Brownell, L. "Jovial J73 Code Auditor", Technical Report, Proprietory Soft-
ware Systems, Inc., 9911 W. Pico Blvd., Los Angeles, CA 90035, 16 March
1982,

Brown, P.J. "Error Messages: The Neglected Area of Man/Machine Inter-
face?", CACM, Vol. 26, No.4, April 1983.

Bulut, N. and M.H. Halstead. "Impurities Found in Algorithm Implementation",
SIGPLAN Notices, 1974.

Buxton J. N. "An Informal Bibliography on Programming Support Environ-
ments." SIGPLAN Notices, December 1980.

Campbell, O. and S. Saib. "Embedded Software Verification Through Instru-
mentation", NAECON 81, May 19-21, 1981, Vol. I, pp. 395-401.

Cheatham, T.E., G.H. Holloway, and J.A. Townley. "Symbolic Evaluation and
the Analysis of Programs", IEEE Transaction on Software Engineering, SE-5,4,
July 1979,

Chow, T.S. "A Generalized Assertion Language", Proceedings 2nd ICSE, S.F.,
Calif., pp. 392-399.

e

(CLA76)

(CLA78)

(COC70)

(COD76)

(CON70)

(COR76)

(CRO75)

(CUR79)

(DAL77)

(DAV)

Clarke, L.A. "A System to Generate Test Data and Symbolically Execute
Programs", IEEE Transaction of Software Engineering, SE-2, Sept. 1976.

Clarke L.
Worksk~p on Software Testing and Test Documentation, Ft. Lauderdale,
Florida, 18-20 December 1978, pp. 191-196.

"Top-Down Testing with Symbolic Execution." Digest for the

Cocke, J. and T.J. Schwartz. Programming Languages and Their Compilers,

Preliminary Notes, Second Revised Version, Courant Institute of Mathematical
Sciences, New York, 1970.

"Code Reading-Structured Walk-Throughs and Inspections", IBM, IPTO, Support
Group, World Trade System Center, Postbos 60, Zoetenmeer, Netherlands,
March 1976.

"Control Flow Analysis". SIGPLAN Notices, 1970, pp. 1-19.

Cornall, L.M. and M.H. Halstead. "Predicting the Number of Bugs Expected In
a Program Module", (Tech. Rep. CSD-TR-205). West Lafayette, IN: Purdue
University, Computer Science Department, October 1976.

Crocker, S. and B. Balzer. "The National Software Works: A New Distribution
System for Software Development Tools." Workshop on Currently Available
Testing Tools, April 1975, p. 21.

Curtis, B., 5.B. Sheppard, and P. Milliman. "Third Time Charm: Stronger
Prediction of Programmer Performance by Software Complexity Metrics",
Proceedings of the Fourth International Conference on Software Engineering.
New York: IEEE, 1979.

Daly, E.B. "Management of Software Development", IEEE Transactions on

Software Engineering, May 1977.

Davis, C.G. "Testing Large, Real-Time Software Systems", Infotech State-of-
the-Art Report - Software Testing, Infotech International, Berkshire,
England,Vol. 2, pp. 85 - 105.

[o
h
J
.
- k
.9
¥
-4

(DEC78)

(DEF79)

(DEM79)

(DEM833)

(DER76)

(DEUSI)

(DONS80)

(ELM73)

(ELS76)

(ELS72)

DEC IAS/RSX-11 "Utilities Procedure Manual", Digital Equipment Corpora-
tion, 1978.

"Defense Mapping Agency: Modern Programming Environment Study-Final
Technical Report." Boeing Computer Services and Planning Systems Interna-
tional, Contract No. SB 1438(A)-79-C-001, October 1979.

DeMillo, R.A., R.J. Lipton, and F.G. Sayward. "Program Mutation: A New
Approach to Program Testing", Infotech State-of-the-Art Report on Software
Testing, V.2, INFOTECH/SRA, 1979, pp.107-127.

DeMillo, R. A., and R. J. Martin. "The Software Test and Evaluation Project: » o

A Progress Report." Proceedings of the National Conference on Software Test
and Evaluation, 1-3 February 1983.

DeRemer and Kron. "Programming-in-the-Large Versus Programming-in-the- i o o

Small." IEEE Transactions on Software Engineering, June 1976.

Deutsch, M.S. "Software Project Verification and Validation", IEEE Computer,
April 1981.

Donahoo, J. D. and D. Swearinger. "A Review of Software Maintenance
Technology." RADC report RADC-TR-80-13, February 1980.

Elmendorf, W.R. "Cause-Effect Graphs in Functional Testing", TR-00.2487,
IBM Systems Development Division, Poughkeepsie, New York, 1973.

Eishoff, J.L. "Measuring Commercial PL/l1 Programs Using Halstead's
Criteria", SIGPLAN Notices, 1976,11, 38-46.

Elspas, B., et. al. "An Assessment of Techniques for Proving Program

Correctness", ACM Computing Surveys, 4, June 1972.

4-144

(END75)

(FAC77)

(FAG76)

(FAI78)

(FEL79)

(FIS74)

(FIT78)

(FLE79)

(FLO67)

(FOS76)

(FRE?77)

(FUM?76)

«®

Endres. "An Analysis of Errors and Their Causes in System Programs." IEE

———

Transactions on Software Engineering, June 1975,

"Factors in Software Quality", Final report, RADC-TR-77-369, 1977.

Fagan, M\E. "Design and Code Inspections to Reduce Errors in Program
Development”, IBM Systems Journal, No. 3, 1976.

Fairley, R. E. "Tutorial: Static Analysis and Dynamic Testing of Computer
Software." Computer, April 1978, pp. 14-24.

Feldman. "MAKE - A Program for Maintaining Computer Programs." Soft-

ware Practice and Experience, April 1979.

Fischer, K.F. "User's Manual for Code Auditor, Code Optimizer Advisor, Unit
Consistency Analyses”", TRW Systems Group, Redondo Beach, Calif., July 1974.

Fitzsimmons, A.B. and L.T. Love. "A Review and Evaluation Science”. ACM
Computing Surveys, 1978, 10, 13-18.

Fleiss, J., G. Phillips, and A. Alvarez. "Compiler Acceptance Guidebook."
RADC report RADC-TR-77-148, May 1979.

Floyd, R.W., T.J. Schwartz, editor. "Assigning Meanings to Programs",
Mathematical Aspects of Computer Science, 19, American Mathematical

Society, Providence, R.l., 1967.

Fosdick, L.D. and L.J. Osterweil. "Data Flow Analysis in Software Reliabil-
ity", ACM Computing Surveys, 8, pp.305-330, Sept. 1976.

Freedman, D.P. and G.M. Weinberg. Ethno-Technical Review Handbook.
Ethnotech, Inc., 1977.

Fumani, Y. and M.H. Halstead. "A Software Physics Analysis of Akiyama's
Debugging Data", Proceedings of the MRI 24th International Software Engin-

eering. New York: Polytechnic Press, 1976.

4145
..................... el "."' .‘ I ".v‘-. Cale '-."‘.-."..".."."-..'. R L S A
..... et e e L T e
AENIAEAENCRAL LY ',"'M-.' AP WRDARR .

(GAN79) Gannon, C., R.N. Meeson, and N.B. Brooks. "An Experimental Evaluation of
Software Testing - Final Report,” General Research Corp., CR-1-854, spon-
sored by Air Force Office of Scientific Research, May 1979.

(GAN80) Gannon, C. "Jovial J73 Automated Verification System-Study Phase", RADC-
TR-80-261, August 1980, NTIS accession no. A09!-190.

(GIL77) T. Gilb, "Software Metrics," Winthrop Publishers, Inc., Cambridge, Mass, 1977.

(GLA76) Glass, R. L. "An Experiment in the Use of Analyzers as a Computer Software
Reliability Tool in the BAC Project Environment", Boeing Aerospace Com-

o
9, e |

pany D180-19987-1, August 1976.
(GLA78) Glass, R. L. "Software Reliability Methodology Survey and Guidebook", The e
Boeing Company, D180-22930-1, 1978, - '.:
> o

(GLA79A) Glass, R. L. Software Reliability Guidebook. Prentice-Hall, 1979.

(GLA79B) Glass, R. L. "Software Reliability at Boeing Aerospace: Some New Findings."
Boeing Aerospace Co. report D180-25392-1, September 1979.

(GLA79C) Glass, R. L. "Real Time Software Debugging and Testing: Proposed
Solutions." Boeing Aerospace Co. report D180-25249-3, September 1979,

(GLA81) Glass, R. L. and R. Noiseux. Software Maintenance Guidebook. Prentice Hall,
Inc., 1981.

(GLA-A) Glass, R. L. "Automated Tools for Software IV & V." The Boeing Co.
Unpublished draft.

(GLA-B) Glass, R. L. "Recommended: A Minimum Standard Software Toolset". The
Boeing Co., Unpublished draft.

(GOD77) Godoy and Engels. "Software Sneak Analysis." Proceedings of the AIAA IERE R
Conference on Computers in Aerospace, 1977, ;

(GOES81) Goel, Dr. Amrit. "A Guidebook for Software Reliability Assessment", prepared ihL*;A_‘

under contract No. F30602-81-C-0169, for RADC. . _ ‘

R

(GOO75) Good, D.I., R.L. London, and W.W. Bledsoe. "An Interactive Program L j

Verification System", Proceedings of the 1975 International Conference on ; : . .Mj

Reliable Software, IEEE Catalog #75CH0940-7CSR.

(GOR76) Gordon, R.D. and M.H. Halstead. "An Experiment Comparing FORTRAN
Programming Times with the Software Physics Hypothesis", AFIPS Proceed-
ings, 1076, 45, 935-937.

(HAL73) Halstead, M.H. "An Experimental Determination of the 'Purity’ of a Trivial
Algorithm", ACM SIGME Performance Evaluation Review, 1973, 2(1), 10-15.

(HAL77) Halstead, M.H. Elements of Software Science, Elsevier Computer Science
Library, 1977.

(HAM82) Hamer, P.G., G.D. Frewin. "M. H. Halstead's Software Science-A Critical
Examination", Proceedings of the 6th International Conference on Software
Engineering, Tokyo, Japan, September, 1982.

(HAR71) Hartwic, R.D. "The Advanced Targeting Study", SAMSO-TR-71-124, Vol.l,
June 1971.

(HEC73) Hecht, M.S. and J.D. Ullman. "Analysis for a simple algorithm for global data
flow problems". Proc. ACM SIGACT/SIGPLAN Symp. on Principles of
Programming Languages. Boston, Mass., Oct. 1973.

(HEC?75) Hecht, M.S. and J.D. Ullman. "A Simple Algorithm for Global Data Flow

Analysis Problems”, Siam Journal of Computing, Vol. #, No. 4, December 1975.

(HEC81A) Hecht, H. "Synopsis of Interviews from a Survey of Software A Tool Usage."
SoHaR Inc. report NBSIR 81-2388, November 1981.

4-147

(HEC81B)

(HEC82)

(HEI82)

(HENS1)

(HET73)

(HET76)

(HOAS61)

(HOA64)

(HOA71)

(HOR?75)

(HOR?78)

Hecht, H. "Final Report: A Survey of Tool Usage." NBS Special Publication
500-82, Superintendent of Documents, U.S. Govt. Printing Office, Wash, D.C.
20402, November 1981.

Hecht, H. "The Introduction of Software Tools." NBS Special Publication 500-
91, Superintendent of Documents, U.S. Govt. Printing Office, Wash, D.C.
20402, September 1982.

Heidler, W., et al. "Software Testing Measures.” RADC-TR-82135, May
1982.

Henry, Sallie, et.al. On the Relationships Among Three Software Metrics,
ACM Sigmetrics, Perf. Eval. Rev., 1981.

Hetzel, W. Program Test Methods. Prentice-Hall, 1973.

Hetzel, W. "An Experimental Analysis of Program Verification Methods",
Ph.D. Thesis, University of North Carolina, 1976.

Hoare, C.A.R. "Partition (Algorithm 63) and QUICKSORT (Algorithm 64)",
CACM, Vol.4, No. 7, July 1961.

Hoare, C.A.R. "QUICKSORT", Computer Journal, Vol.5, No.l, 1964.

Hoare, C.A.R. "Proof of a Program: FIND", CACM, Vol.14,No.1, Jan. 1971,
pp.39-45.

Horowitz. Practical Strategies for Developing Large Software Systems.
Addison-Wesley, 1975.

Horowitz, E. and S. Sahni. Fundamentals of Computer Algorithms. Computer

Science Press, Potamac, MD. 1978.

4-148

- r——— e

°. .0

(HOU81A) Houghton, R. C., Jr. "Features of Software Development Tools." NBS Special
Publication 500-74, Superintendent of Documents, U.S. Govt. Printing Office,
Wash, D.C. 20402, February 1981.

(HOU81B) Houghton, R. C., Jr., editor. "Proceedings of NBS/IEEEIACM Software Tool
Fair." NBS Special Publication 500-80, Superintendent of Documents, U.S.
Govt. Printing Otffice, Wash, D.C. 20402, October 1981.

(HOU82) Houghton, R. C., Jr. "Software Development Tools." NBS Special Publication
500-88, Superintendent of Documents, U.S. Govt. Printing Office, Wash, D.C.
20402, March 1982.

(HOW A) Howden, W. E. "Functional Testing and Design Abstractions". A Journal of
Systems and Software (to appear).

(HOW) Howden, W. E. "Symbolic Testing - Design Techniques, Costs, and Effective-
ness", U.S. Dept. of Commerce, NTIS PB-268, 517, Springfield, VA.

(HOW75) Howden, W. E. "Methodology for Generation of Program Test Data", IEEE
Transactions on Computers, TC-24, May,1975.

(HOW77) Howden, W.E. "Symbolic Testing and the Dissect Symbolic Evaluation System",
IEEE Trans. on Software Engineering, Vol. SE-3, No. 4, July 1977.

(HOW78A) Howden, W. E. "An Evaluation of the Effectiveness of Symbolic Testing."
Software Practice and Experience, July 1978.

(HOW78B) Howden, W. E. "Selection of Fortran Static Analysis Techniques." University
of Victoria report DM-147-IR, August 1978.

(HOW78C) Howden, W. E. "Functional Program Testing.” University of Victoria report
DM-146-IR, August 1978.

(HOW79) Howden, W. E. "An Analysis of Software Validation Techniques for Scientific
Programs."” University of Victoria report DM-171-IR, March 1979,

m‘ T —— -
SN - - R RGP RN A L e T T T T - St RSN RS e T e T,

(HOWS80A) Howden, W. E. "Validation of Scientific Programs", U.S. National Bureau of
Standards, Wash., D.C., 1980.

o
N X L. .
. .o R .

(HOW80B) Howden, W. E. "Completeness Criteria for Testing Elementary Program
K Functions”, University of Victoria, Department of Mathematics, May 1980, ST

(HOWS80C) Howden, W. E. "Functional Program Testing". IEEE Transactions on Software

] Engineering, SE-7, March 1980.
% -
;: (HOWS80D) Howden, W. E. "Functional Testing and Design Abstractions". Journal of L
Systems and Software, Vol. I, 307-313, 1980. S
» e
(HUA75) Huang. "An Approach to Program Testing", ACM Computing Surveys, Septem-
ber 1975.
(HUA79) Huang, J.C. "Detection of Data Flow Anomaly Through Program Instrumenta- ’ °

tion", IEEE Trans. on Software Engineering, Vol. SE-5, No. 3, May 1979.

(JAC71) Jackson and Bravdica. "Software Valic -tion of the Titan IIIC Digital Flight
Control System Using a Hybrid Compute.." Proceedings of the 1971 Fall Joint

Computer Conference.

(KAR78) Karr, M., D.B. Loveman, Ill. "Incorporation of Units into Programming
Languages", CACM, Vol.21, No.5, pp.385-391, May 1978.

(KEN76) Kennedy, Ken. "A Comparison of Two Algorithms for Global Data Flow
Analysis", Siam Journal of Computing, Vol. 5, No. |, March 1976.

(KER76) Kernighan B. W. and P. J. Plauger. Software Tools. Addison-Wesley, 1976.

j:: (KIL73) Kildall, G.A. "A unified approach to global program optimization". Proc.
% ACM SIGACT/SIGPLAN Symp. on Principles of Programming Languages.
['.i- Boston, Mass., Oct. 1973.

8

-'?

T (KIN76) King, J.C. "Symbolic Execution and Program Testing”, CACM, 19, 7, July

P 1976, pp.385-394.

[2. NI

(KIN81)

(LAP74)

(LIP78)

(LOV76)

(MAN74)

(MAN78)

(MAR78)

(MCC76)

(MEL79)

(MELS1)

(MERS81)

King, Bill. "ARGUS on BITS." Boeing Computer Services-SAMA Software
Engineering Technology, November 1981.

L. J. LaPadula, "Engineering of Quality Software Systems, Volume VIII,
Software Reliability Modeling and Measurement Techniques," RADC-TR-74-
325, Mitre Corp., Bedford, Mass., 1975 (NTIS AS/A-007773).

Lipton, R.J. and F.G. Sayward. "The Status of Research on Program
Mutation", Digest of the Workshop on Software Testing and Test Documenta-
tion, Fort Lauderdale, FLA., 1978, pp.355-373.

Love, L.T. and A. Bowman. "An Independent Test of the Theory of Software
Physics", SIGPLAN Notices, 1976,11 pp.42-49.

Mangold, E.R. "Software Error Analysis and Software Policy Implications",
IEEE EASCON, 1974, pp. 123-127.

Manna, Z. and R. Walding. "The Logic of Computer Programming", IEEE-TSE,
SE-4, No.3, May 1978, pp.199-229 (especially pages 199-204).

"Problem Program Evaluator (PPE) User Guide", Boole and Baggage, Inc.,
Sunnyvale, Calif., March 1978.

McCabe, T.J. "A Complexity Measure", IEEE Transaction on Software

Engineering, Vol. SE-2, No.4, December 1976.

Melton, R. "Fortran Automated Verification System (FAVS)", Vol. I, technical
report, RADC-TR-78-268, Jan. 1979, NTIS accession no. A065-405.

Melton, R. "Cobol Automated Verification System - Study Phase", RADC-TR-
81-11, March 1981, NTIS accession no. A098-755.

Merilatt, R. L., M. K. Smith, and L. L. Tripp. "Computer Software Verifica-
tion and Validation: A General Guideline." Boeing Computer Services report
BCS-40342, June 1981.

(MEY75)

(MIL72)

(MIL75)

(MIL81)

(MYE76)

(MYE?78)

(MYE79)

(NAF72)

(NBS80)

(NG78)

(OST76)

Meyers, G. Reliable Software Through Composite Design, Petrocelli/Charter,
1975.

H. D. Mills, "On the Statistical Validation of Computer Programs, FSC-72-
6105, IBM Federal Systems Division, Gaithersburg, Md., 1972.

Miller, E. and R.A. Melton. "Automated Generation of Testcase Datasets",
1975 International Conference on Reliable Software, Los Angeles, April 1975.

Miller, E. and W. E. Howden. TUTORIAL: Software Testing and Validation
Techniques. IEEE Computer Society Press, 1981.

Myers, G. Software Reliability: Principles and Practices. Wiley-Interscience,
New York, 1976.

Myers. "A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections." Communications of the ACM, September 1978.

Myers, G. The Art of Software Testing. Wiley-Interscience Publication, 1979.

Naftaly, S.M. and Cohen, M.C. "Test Data Generators and Debugging
Systems", Workable Quality Control, Part I and 1I, Data Processing Digest,
Vol.18, No.2 and 3, February and March, 1972.

"NBS Software Tools Database."” dtd Oct 80. Available from the U. S. Dept.
of Commerce, National Technical Information Service, 5285 Port Royal Road,
Springfield, Virginia, 22151, Accession No. PB81-124935.

Ng and Young. "A 1900 Fortran Post Mortem Dump System." Software
Practice and Experience, July 1978.

Osterweil, L.J. and L.D. Fosdick. "DAVE-A Validation Error Detection and
Documentation System for Fortran Programs", Software Practice and Experi-
ence, 6, pp.4#73-486, Sept. 1976.

l B

(OST78)

(OTT79)

(PAI177)

(PAN78)

(POW32A)

(POW32B)

(PRE79)

(PRO83)

(QUA79)

(QUAS3A)

Osterweil, L. J., J. R. Brown, and L. G. Stucki. "ASSET: A Lifecycle
Verification and Visibility System." Proceedings of COMPSAC 78, IEEE
Catalog No. 78CH1338-3C, November 1978, pp. 30-35.

Ottenstein, L.M. "Quantitative Estimates of Debugging Requirements", IEEE
Transactions on Software Engineering, 1979, Vol.5, pp.504-514,

Paige. "Software Testing Principles and Practice Using a Testing Coverage
Analyzer." Transactions of the Software ‘77 Conference, October 1977.

Panz],D.J. "Automatic Software Test Drivers", IEEE Computer, April 1978.

Powell, P. B., editor. "Software Validation, Verification, and Testing Tech-
nique and Tool Reference Guide." NBS Special Publication 500-93, Superin-
tendent of Documents, U.S. Govt. Printing Office, Wash, D.C. 20402,
September 1982.

Powell, P. B., editor. "Planning for Software Validation, Verification, and
Testing." NBS Special Publication 500-98, Superintendent of Documents, U.S.
Govt. Printing Office, Wash, D.C. 20402, November 1982,

"Preliminary Ada Reference Manual", SIGPLAN Notices, Vol.14, No.6, part A,
June 1979.

"Proceedings of the National Conference on Software Test and Evaluation."
National Security Industrial Association, Software Group, 1-3 February 1983.

"Quantitative Software Models." Data and Analysis Center for Software,
order No. SRR-1, RADC/ISISI (315) 336-0937, Autovon 587-3395.

"Quality Metrics for Distributed Systems", Final report, Boeing Aerospace
Company document, D-182-11377-1, -2, -3, [983.

4-153

T —— L SNeae Ames Jaber b e muen e sien Jeen e man ann - seer e
. N e O P S SRRSO . - e

Y

i\ B

L L AR LA
LA NS

(QUAZ3B) "Quality Metrics Framework Enhancements for Software Agquisition" (CDRL

{(RAM75)

(REI74)

(RE177)

(REI80)

(RED)

(RIC81)

(RUD77)

(RYD75)

(SAI82)

A003), RADC contract F30602-82-C-0137 with Boeing Aerospace Company,
July 1983,

Ramamoorthy, C.V. and K.H. Kim. "Software Monitors Aiding Systematic
Testing and Their Optional Placement”, Proceedings of the First National

Conference on Software Engineering, IEEE Catalog No. 75CH0992-8C, Sep-
tember, 1975.

Reifer, D. J. and R. L. Ettenger. "Test Tools: Are They A Cure-All?".
SAMSO-TR-75-13, October 1974.

Reifer, D. J. and Trattner. "A Glossary of Software Tools and Techniques."
IEEE Computer, July 1977.

Reifer, D. J. and H. A. Montgomery. "Final Report, Software Tool Taxon-
omy." SMC-TR-004, |1 June 1980.

Reifer, D. J. "Software Tools Directory.” Reifer Consultants Inc. 2733
Pacific Coast Highway, Suite 203, Torrance, CA 90505.

Richardson, D.J.,, L.A. Clarke. "A Partition Analysis Method to Increase

Program Reliability". Proceedings of the Fifth International Conference of

Software Engineering, 1981, pp.244-253,

B. Rudner, "Seeding/Tagging Estimation of Software Errors: Models and
Estimates," RADC-TR-77-15, Polytechnic Institute of New York, 1977 (NTIS
AD/A-036655).

Ryder, B.G.and A.D. Hall. "The PFORT Verifier", Computing Science Techni-
cal Report #12, Bell Laboratories, Murry Hill, New Jersey, March 1975.

Saib, S. H., et al. "Validation of Real-Time Software for Nuclear Plant Safety

Applications." Electric Power Resear *h Institute report EPRI NP-2646,
Project 961 Final Report, November 1982,

y-154

v e
R >

(SCH73)

(SCHS1)

(SCH79)

(SHE83)

(SHN80)

(SM176)

(SMI179)

(SMI80)

(SMi81)

(SOF77)

(SOF80)

Schaefer, M., A -Mathematical Theory of Global Program Optimization.
Prentice-Hall, Englewood Cliffs, N.J., 1973.

Schindler, M. "Today's Software Tools Point to Tomorrow's Tool Systems."
Electronic Design, 23 July 1981, pp. 73-110.

Schneidewind and Hoffman. "An Experiment in Software Error Data Collec-
tion and Analysis." Transactions on Software Engineering, May 1979.

Shen, V.Y., et.al. Software Science Revisited: A Critical Analysis of the
Theory and Its Empirical Support, IEEE Trans. on SW Eng., March 1983.

Shneiderman, B. Software Psychology-Human Factors in Computer and

Information Systems. Winthrop Publishing, 1980.

Smith, P. "Fortran Code Auditor Users' Manual", RADC-TR-76-395, Vol. I,
December 1976, NTIS accession no. A035-778.

Smith, C.U. and Browne, J.C. "Performance Specifications and Analysis of
Software Designs", Proc. Conference on Simulation, Measurement and Model-
ing of Computer Systems, Boulder, CO., August 1979.

Smith, C.U. "The Prediction and Evaluation of the Performance of Software
from Extended Design Specification", Ph.D. Dissertation, University of Texas
at Austin, August 1980.

Smith, M. K. and D. R. Hudson, et al. "A Report on a Survey of Validation and
Verification Standards and Practices at Selected Sites." Boeing Computer
Services report BCS-40345, June 1981.

"Software Acquisition Management Guidebook: Validation and Certification",
Air Force document, ESD-TR-77-326, 1977.

"Software Quality Metrics Enhancements”, Final report, RADC-TR-80-109,
1980.

(SOF82) "Software Engineering Automated Tools Index." Software Research Associ-
ates, 1982,

(SOF83) "Software Interoperability and Reusability", Final report, Boeing Aerospace
Company document, D182-11340-1, -2, 1983.

(SPE79) "Sperry Univac Series 1100 Fortran (ASCIl) Programmer Reference," Sperry
Rand Corporation, 1979.

(SPE&2) "Specification of Software Quality Attributes", Interim reports, Boeing Aero-
space Company documents, D182-11310-1, D182-11373-1, 1982.

- (STA77) Stanfield and Skrukrud. "Software Aquisition Management Guidebook Soft-
ware Maintenance Volume," System Development Corp., TM-5772/004/02,
November 1977.

= " (STU73) Stucki, L.G. "Automatic Generation of Self-Metric Software", Proc. 1973
IEEE Symposium on Computer Software k.. bility, 94(1973).

(STU75) Stucki, L. G. and G.L. Foshee. "New Assertion Concepts for Self-Metric
Software", Proc. 1975 Conference on Reliable Software, pp.59-71.

(STUS!) Stucki, Leon G. "Using ARGUS on EKS II." Boeing Computer Services, March
1981.

(SUK77) Sukert. "A Multi-Project Comparison of Software Reliability Models." Pro-
ceedings of the AIAA Conference on Computers in Aerospace, 1977.

(SUM) "Summary of Software Testing Measures." Software Research Associates
report SRA TN-843.

. ,‘Y. N A A
: PR A LI
’ . P

Ve '.'\v_-
AeE

(SYS77) "Systematic Software Development and Maintenance (SSDM)", Boeing Com-

A

puter Services Document #10155, February 1977.

Lau)
L
. e
's &]

(TAY79) Taylor, R. N., R. L. Merilatt, and L. J. Osterweil. "Integrated Testing and
Verification System for Research Flight Software." Boeing Computer Services
report NAS1-15253, July 1979.

—
y
¥

(TAY80) Taylor, R.N. "Assertions in Programming Languages", SIGPLAN Notices,
Vol.15, No.1, January 1980, pp.105-114.

(TAY80B) Taylor, R.N. and L.J. Osteweil. "Anomaly Detection in Concurrent Software
by Static Data Flow Analysis", [EEE Transactions on Software Engineering,
Vol. SE-6, No. 3, pp. 265-278, May 1980.

(TEI72) Teichroew, D. "A Survey of Languages for Stating' Requirements for
Computer-Based Information Systems", the University of Michigan, Proceed-
ings of the Fall Joint Computer Conference, 1972, pp.1203-1224.

(TE177) Teichroew, D. and E.A. Hershey, IIl. "PSL/PSA: A Computer-Aided Technique
for Structured Documentation and Analysis of Information Processing Sys-
tems", IEEE Transactions on Software Engineering, SE-3, 1977, (41-48).

(THA76) Thayer, T.A., et al "Software Reliability Study." RADC report
RADC-TR-76-238, August 1976.

(THR75) "THREADS: A Functional Approach to Project Control”, Computer Sciences
Corporation, El Segundo, CA, 1975.

(ULL73) Ullman, J.D. "Fast Algorithms for the elimination of common subexpressions".
Acta Informatica, 2(1973), pp. 191-213.

(WEA78) "Weapon System Software Development." Military Standard MIL-STD-1679
(NAVY), 1 December 1978.

(WEI71) Weinberg, G.M. "Programming as a Social Activity", The Psychology of
Computer Programming. Van Nostrand, Reinhold, 1971.

(WEI77) Weide, B. "A Survey of Analysis Techniques for Discrete Algorithm",

Computing Surveys, Vol.9, No.4, Dec. 1977.

(WEI78)

(WES79)

(WHI80)

(WIN79)

(WO079)

(YEH77)

(YOu77)

Weiss. "Evaluating Software Development by Error Analysis.” Naval Research
Lab NRL-8268, December 1978,

Western District Utilities Manual, Boeing Computer Services Document
#G0031 Rev. A, June 1979.

White, L.J. and E.l. Cohen. "A Domain Strategy for Computer Program
Testing", IEEE Transactions on Software Engineering, Vol. SE-6, No.3, May
1980.

Winograd. "Beyond Programming Languages.' Communication of the ACM,
July 1979.

Woodfield. "An Experiment on Unit Increase in Program Complexity". IEEE

Transactions on Software Engineering, March 1979.

Yeh, R.T., editor. Current Trends in Programming Methodology, Volume II.
Prentice-Hall, Inc., 1977.

Yourdon, E. Structured Walk-throughs. Yourdon, Inc. 1977.

) 'y
P e
i""l;'..'i‘?A

TR~y

Y
[

.ﬁ""{.‘p*r‘ -
) PUARIA
. ot

T

LB LM RS g - s S Ty a2

5.0 ACQUISITION LIFE CYCLE

5.1 AIR FORCE PHASED ACQUISITION

This section contains descriptions of Air Force phased acquisition objectives for develop-

.
-~
s
-
.

ment test and evaluation (DT&E), operational test and evaluation (OT&E), initial

1

o
5y

operational test and evaluation (IOT&E), follow-on operational test and evaluation
(FOT&E), and software verification and validation (V&V). Figure 5.1-1 shows the
relationship between the test phases used in this handbook, the Air Force software life

A

cycle and the test and evaluation phases. Reference figure 2-10 for definitions of the
nine test phases used in this guidebook.

= 5.1.1 Test and Evaluation During the Acquisition Process
There are two kinds of test and evaluation (T&E) in the system acquisition process: DT&E S
and OT&E. Either may occur at any point in the life cycle of the system, subsystem, or » L

item of equipment (all hereafter referred to as a system). Their primary purposes are to

identify, assess, and reduce the acquisition risks, to evaluate operational effectiveness
and operational suitability, and to identify any deficiencies in the system. Adequate T&E

must be performed before each major decision point to make sure that the major

objectives of one phase of the system acquisition life cycle have been met before the next

phase is begun. Quantitative data must be used to the maximum extent practical, to show

that the major objectives have been met. Subjective judgment, relative to systems

performance, must be minimized.

The following two sections describe DT&E and OT&E objectives and the relationship of
DT&E and OT&E with the test phases used in the handbook. Detailed information on T&E
can be found in AFR 80-14, paragraphs 19 through 22.

5.1.1.1 Development Test and Evaluation

Through DT&E, the Air Force must demonstrate that (1) the system engineering design

and development are complete, (2) design risks have been minimized, and (3) the system

will perform as required and specified. It involves an engineering analysis of the system's

performance, including its limitations and safe operating parameters. The system design

saseyd 1591 'SA saseyd 324D 3411 a1emyyos pue
UONEIILI3D PUE ‘UOIIEPIIEA ‘UOIIEIYLIIA 40 3d0IS Y] “L-1'§ 34nbiy

NOILYDIH11Y3D 3810

NOILVQITYA 3810 W3ILSAS

NOILVYIIHIHIA ¥vII/104/10d

NOILVISIA NOILVIIIYIA NOILVQIVA

: ¥A750d Ba/HYS

vy vy v_ v
2 INILSAS WILSAS L (13w¥Q) J3dS NOILVYDII1I3dS - NOLLVYDI41D3dS ALIgvdvd

, TYNOILVYIdO Q3LVYOILNI 1343 — " 1>naoyd INIW W31SAS [IvNOILY¥3dO
] -4013A3Q aaxnbay

- NOILLYIHI¥IA
[- 3814
8 vd ~

_ 1531 NOISSIW -
-...

X 1531 W3ILSAS

5 1531104104

_ 1247 dI¥3A

“OIINI
1531310 | NOwwdI4!

b 1¥0ddNs ¥ TYNOILVY3IJO -QOW/LINN | -¥IA NOISIC NOILVINYIINOD WHLINODTY
“... NOULYTIVISNI
- NOILVYDILNI
9 1S7L
p.
LNOMIIHD

_ V2d/v34 % 300D g
b’ ‘o
NOIS3a SISATYNY ,
¥ad ¥ad .

<.
e Tad T o " g

S

B

e T " - s e ——————— T T ol

is tested and evaluated against engineering and performance criteria specified by the
implementing command. DT&E addresses the logistic engineering aspects of the system
- design and may go on all through the life cycle. It may include testing not completed
F before the first major production decision. It may also involve testing product improve-
! ments or modifications designed to correct identified deficiencies or to reduce life cycle
costs.

- The types of testing that occur during DT&E according to the test phases used in this
handbook are algorithm confirmation testing through system testing. In other words,
DT&E activities include very low level testing to high level testing. The testing
objectives include verifying that the algorithm will satisfy the requirements imposed on

the software design, verifying that the design is a correct implementation of the specified

requirements, verifying that the unit's logic and interfaces satisfies the design specifica-

tions, verifying that the computer program configuration item (CPCI) is a correct

implementation of the specified design, verifying that all specified real-time and

functional requirements are satisfied, and verifying that the system is in agreement with

the system level specifications.

5.1.1.2 Operational Test and Evaluation

OT&E is conducted, in conditions made as realistic as possible, throughout the system life

T'; cycle. It is done to estimate (or to refine estimates of) a system's operational

effectiveness and operational suitability in order to identify any operational deficiencies

and the need for any modifications.

Through OT&E, the Air Force measures the system against the operational criteria

outlined in pertinent program documentation (e.g., system operational concepts) devel-

oped by DOD, HQ USAF, and using and supporting commands. Information is provided on

organizational structure, personnel requirements, doctrine, and tactics.

~_',-? OT&E is used to provide data to verify operating instructions, computer documentation,
' training programs, publications, and handbooks. It uses personnel with the same skills and

qualifications as those who will operate, maintain, and support the system when deployed.

Types of OT&E include initial OT&E (IOT&E) and follow-on OT&E (FOT&E). On certain
programs, qualification OT&E (QOT&E) is conducted instead of IOT&E. For guidance on
conducting OT&E, see AFM 55-43.

IOT&E is conducted before the first major production decision. It is done by the OT&E
command or agency (hereafter called OT&E command) designated by HQ USAF. As a
rule, it is done using a prototype, preproduction article or a pilot production item as the
test vehicle.

FOT&E is that operational testing usually conducted after the first major production
decision or after the first production article has been accepted. It may go on all through

the remainder of the system life cycle. In this case, it may be done to refine estimates of

operational effectiveness and suitability, to identify operational deficiencies, to evaluate

system changes, or to reevaluate the system against changing operational needs.

The types of testing that occur during OT&E according to the test phases used in this
handbook are system and mission testing. That is, OT&E activities include very high level
testing. The testing objectives include verifying that the entire system meets its system
level specifications and verifying that the entire system meets the requirements of the

mission.

5.1.2 Computer Program Verification and Validation

This section describes computer program V&V and its relationship to the computer
program life cycle. Only those phases of the life cycle that pertain to software testing
are included in this discussion. The relationship between the computer program life cycle

and the test phases used in this handbook are also given.
3.1.2.1 Design Phase

All models should be checked for logic and completeness. In some cases it rnight be
desirable to indep--ndently rederive equations to insure correctness. A scientific

simulation of the system may be produced; that is, the algorithms are coded in a higher

PR R A T
SRR N

TS e
PP PR IR)

< order language such as Fortran and executed on a general purpose computer. This type of
simulation is used to develop algorithms and to check system interfaces. The outputs
from such a simulation may be useful for later comparison with actual system outputs.

B The type ot testing that occurs during the design phase according to the test phases used

b
Eﬁ:. in the handbook is design verification testing. The objective of this type of testing is to
! verify that the design is a correct implementation of the specified requirements.

5.1.2.2 Code and Checkout Phase

After a program has been coded, it must be reviewed to ensure that it agrees with

program specifications. This can be accomplished by cross-checking the code itself with

earlier specifications, flow charts, and so forth, or by running the code in a simulated

computer environment. One way to accomplish this type of checkout is by desk-checking;

that is, by manually going through the code and comparing it to the specifications.

Another method is a correctness proof; that is, a mathematical proof that code performs

exactly the functions given in the coding specifications and no others. Correctness proofs

are only practical for relatively small routines.

The types of testing that occurs during the code and checkout phase according to the test
phases used in the handbook are primarily unit test and module test. Integration test and

verification/CPCI test may also occur at this time. The objectives of unit and module

test phases are to detect discrepancies between the unit's logic and interfaces, and its

design specifications, and to detect discrepancies between the module's logic and

interfaces, and its design specifications, respectively. Objectives for integration test and

verification/CPCI test can be found in section 5.2.

3.1.2.3 Test and Integration Phase

Several different types of simulation are used in the test and integration phase. In one

simulation, the operational program is run on the actual operational computer, while

another computer is used to simulate the inputs to the interfacing electronic equipment.

Another simulation is similar to this one, except that some system equipment is used in

addition to the operational computer. A further simulation uses system equipment and
: some live inputs; for example, the use of a radar set against actual aircraft in flight.

..................

S e e e TR TN o Pl Dl Caal-a e M A A MR A i Sie awe Shgs At ares Edi Sadi Mt dand el St e 4

The types of testing that occur during the test and integration phase according to the test
phases used in the handbook are primarily integration, verification/CPCI, and PQT/FQT
= testing. Module testing may occur early in the test and integration phase. The test phase
n objectives are to combine and test units and modules in order to check that the interfaces
are defined correctly, to verify that the computer program configuration item (CPCI) is a
correct implementation of the specified design, and to verify that the real-time and

functional requirements are satisfied.
5.1.2.4 Operational and Support Phase

E Whenever changes are made to equipment of computer programs, the operational program
‘ must be retested. Simulations are useful for retesting the system. Simulation tools and
v accompanying documentation should be identified in the computer resources integrated

Vo support plan (CRISP) and acquired at the same time the system is acquired.

The types of testing that occur during the operational and support phase according to the

test phases used in the handbook is mission testing. The objective of this testing is to

verify that the entire system correctly fulfills the intended mission.

3

L
.0

P e

g DS

LA ,
xl';l’ et

rF

PICIPOL SR S -
R / «
e el B S o 2% g A &

IRESAR
P Py

. O PR TLtL At

M MO
B

-'-'."",
R C e
i

6.0 SAMPLE REQUIREMENT PARAGRAPHS
FOR STATEMENTS OF WORK

6.1 INTRODUCTION

This section provides sample statement of work paragraphs, which are examples of the
various approaches that can be used to specify the use of software testing techniques with
the aid of the Software Test Guidebook. The sample SOW paragraphs are written to allow
various degrees of constraint in the imposition of testing technique requirements, from
very tightly constrained to mild guidance. They may need to be modified or specific
details added by the Air Force acquisition manager to fit the development environment of

a particular situation or the contractual relationship being considered.

The information in parentheses (...) must be filled in by the acquisition manager. The
SOW paragraphs require that "implementation details" be provided in the Software Test
Plan. Data item descriptibns (DID) for software test plans may not include provisions for
this type of information. Therefore, the DID may need to be modified to provide a

section for the newly required information.

For tightly constrained requirements (sections 6.2 and 6.3), reference the desired testing

techniques in section 4.0 by name and section number.
6.2 TIGHTLY CONSTRAINED-DIRECT SPECIFICATION

The following paragraph can be used to specify specific techniques identified in the
guidebook. The guidebook would thus serve as a guide to AF personnel for selecting
testing techniques for all software products. The testing techniques for each software
product, such as ground support software and inflight software, would be separately

determined.
Tightly Constrained - Direct Specification
Developed computer programs shall be tested in accordance with techniques

described in the Software Test Guidebook, RADC-TR-84-XX. The following
testing techniques shall be used:

. -' N

S b S B A

LA

TR I D RS

Technique Name Guidebook Sect. # Phase(s)

The testing techniques, and necessary implementation details, shall be
described in the Computer Program Test Plan (See CDRL).

6.3 TIGHTLY CONSTRAINED-SUBSET SPECIFICATION

The following paragraph can be used to specify a minimum set of techniques plus the use
of the guidebook by the contractor to select additional testing techniques for the entire

software project or an individual computer program.
Tightly Constrained - Subset Specification

Developed computer programs shall be tested in accordance with techniques described in
the Software Test Guidebook, RADC-TR-84-XX. As a minimum, the following testing
techniques shall be used:

Technique Name Guidebook Sect. # Phase(s)

Selection of additional techniques, utilizing a test confidence level (TCL) of
(....) shall be performed in accordance with procedures described in Section 2.0
of the Software Test Guidebook. The resulting set of test techniques, and
necessary implementation details, shall be described in the Computer Program
Test Plan (See CDRL). Rationale for the selection of those techniques, from
the candidate set identified by use of the Software Test Guidebook, shall be
provided.

6-2

6.4 MODERATELY CONSTRAINED SPECIFICATION

The following paragraph can be used to specify the use of the guidebook for selecting
software testing techniques. A test confidence level is the only predetermined factor.
The paragraph does not constrain the developer to use specific techniques, nor does it
identify specific phases in which the techniques are to be applied.

Moderately Constrained

Developed computer programs shall be tested in accordance with techniques
. described in the Software Test Guidebook, RADC-TR-84-XX. Selection of
techniques, utilizing a test confidence level (TCL) of (....) shall be performed
in accordance with procedures described in Section 2.0 of the Software Test
Guidebook. The resulting set of test techniques, and necessary
implementation details, shall be described in the Computer Program Test Plan
(See CDRL). Rationale for the selection of those techniques, from the
candidate set identified by use of the Software Test Guidebook, shall be
provided.

6.5 LOOSELY CONSTRAINED SPECIFICATION

R)]

The following paragraph can be used to allow the contractor extensive freedom in

' selecting software testing techniques.
Loosely Constrained

Developed computer programs shall be tested in accordance with techniques
described in the Software Test Guidebook, RADC-TR-84-XX. Selection of
techniques shall be in accordance with procedures described in Section 2.0 of
the Software Test Guidebook. The resulting set of test techniques, and
necessary implementation details, shall be described in the Computer Program
Test Plan (See CDRL). Rationale for the selection of those techniques, from
the candidate set identified by use of the Software Test Guidebook, shall be
provided.

| aadCRdcantc i T v v DI e B e Svas A N e L oy Ml Jnem e a-ut s I U b s edh hen Meeh srem dbven PR A Joan vl gl Sean At Dl T

INTRODUCTION TO APPENDICES

The information in the five appendices was derived from a survey of Air Force testing
requirements in five mission areas. This survey was done as part of the conifact for the
preparation of this handbook. The survey gathered information on programming charac-
teristics and the development/support environments of typical application software for
the five Air Force mission areas. Within each mission area, differences in application
software which impact the most appropriate testing/verification strategy were investi-
gated. The survey forms were supplemented by visits to representative Air Force

b software sites.

Wt e e e

APPENDIX A: ARMAMENT

The software testing procedures described in this appendix are based on a representative
site devoted largely to this mission. Therefore, the procedures covered in this appendix
may not include all aspects of the armament mission.

Al. ARMAMENT DIVISION

The Armament Division (AD) is a developing agency for tactical weapon systems, and
particularly for threat, missile, and scoring systems. All embedded software systems
development at AD is performed by contractors. The contractors are usually small,
specialized, high-technology companies, but larger aerospace companies also contribute to
the systems development. The software contained in these systems typically tends not to
be critical, even though the systems themselves may be critical. The contractors design,
develop, and test the software according to contractor-defined standards and under the
general contractual-level supervision of Air Force personnel. Testing practices vary
widely among the many contractors supporting the AD.

AZ2. AD MISSION

The primary mission area applicable to the Armament Division is armament. Secondary
mission areas are aeronautical and missile/space, including avionics systems and air-to-air

and air-to-ground missile systems,
A3. SOFTWARE DEVELOPMENT ENVIRONMENT

The most significant category of software is the operational software for embedded

systems. The embedded systems developed at AD are generally found in three categories:

a. Threat systems. Defensive and offensive radar, targeting and tracking systems, and
electronic countermeasures.

b. Missile systems. Air-to-air and air-to-ground missile systems.

c. Scoring systems. Proximity detectors for projectiles, used in aerial gunnery

training.

e e ea i
®]
- A
® []

. T Ay T—— P -

24 8ec Sine Siae Su an-en g SO Giige Shon Bndt Jse 4

The data processing and administrative software area was not surveyed; typically, these
systems are in place and are not subject to extensive new development. Also, the
embedded operational software systems are more germane and critical to the primary
mission of the AD.

General Environment. Software development is conducted as a part of embedded systems
development. System requirements are defined by Air Force personnel and then the

systems and the software are designed, implemented, and tested by contractors selected

in competitive bidding. The Air Force may participate in the definition and specification

‘ of detailed requirements. The companies range from small businesses to major aerospace
F corporations. Procurement requirements for software are similar for all systems develop-
ment and their implementation is monitored by design reviews, audits, and detailed

reviews of contractor-furnished documentation.

Software (computer programs and associated data) typically comprises a significant share
of the contractors' system development effort (labor), ranging up to one-half or even more
of the total effort.

Standards. The Armament Civision complies with the 800-series Air Force regulation for
systems development. The following regulations and standards are applicable to
embedded systems and software development:

AFR 80-14 (Test and Evaluation).

AFR 800-14 (Management of Computer Resources in Systems).

MIL-STD-483 (Configuration Management Practices).

MIL-STD-1521A (Reviews and Audits).

MIL-STD-490 (Specification Practices).

MIL-STD-1750A (16-Bit Instruction Set Architecture).

MIL-STD-1589A (JOVIAL J73 Language).

MIL-STD-1815 (Ada Language).

IEEE STD-716 (ATLAS Language).

American National Standard X3.9 (FORTRAN 77 Language).

Administration. Contractors are required to identify and account for embedded software
as computer program configuration items (CPCI), including support computer programs

(such as ATE software). The programs are controlled using allocated configuration

T e — g -
v Ry PR Ak S S

PET
. .- ".'.
®

identification and product configuration identification, with associated Part I and Part I
specifications. CPCI-to-CPCl and CPCl-to-hardware interface specifications are also
required. Computer programs are subjected to a sequence of reviews and audits:
preliminary design review, critical design review, functional configuration audit, and

. e N
o Aaalaeaimas w.oo

physical configuration audit.

Languages. Approved high-order languages are mandated for embedded computer
programs. The specified languages are JOVIAL J73, Ada, and FORTRAN 77, in that order _‘ B
of priority. The specified language for automatic tes* equipment (ATE) is ATLAS. S

Exceptions to the priority or the approved list must be authorized; the use of assembly

language or nonapproved higher order language (HOL) subsegments must also be -. . S
authorized. B
Support Software. Contractors are encouraged to use off-the-shelf components and o
support tools. The following support tools are required: ; .-<

a. An efficient compiler (in terms of code generated) and code generator for an
approved HOL.

b. A software development station with aids, including a programmable read only

memory (PROM) programmer, if applicable.

c. A complete support software library, including but not limited to an editor, linking

loader, and run-time support routines.

d. Compatible hardware and software peripheral equipment.

Capacity Requirements. Embedded software is required to have a 30% spare capacity in

memory utilization. Also, the software is required to exercise only 70% of the computer's

throughput and input/output channel capacity.

Coding Standards. Contractors must establish coding standards for software development.
The following minimum requirements are imposed:

a. Modularity. Computer programs shall be modular in design. Module identification

shall be along functional lines with ease of maintenance being a prime consideration.

To the maximum extent practical, data base information shall not be provided as in-

line code. Rather, data shall be provided in a separate, non-executable module or
file,

T g T ppm—— e

Ve

b. Structured programming. The principles of top-down, structured programming shall
be used to the maximum extent practical. Each module or submodule of the
computer program shall be designed -‘ith a single entry point and a single exit point.

c. Comments. Computer program listings shall contain comments that completely

describe the functions being performed in each program module.

A3.3 Software Characteristics

The most common categories of software developed are embedded operational programs
and ground support systems, particularly for system tests using ATE. The computer

-t

programs range from small (under 16K statements) to large (64K to 200K statements), the)

project size ranges frpm small to medium, and the development periods are relatively R

short (between 1 and 3 years). Emphasis is placed on the adequacy of documentation, with

the following document items being representative: R
System specification. ’ Mh’:‘“

Computer program development specification (Part I).
Computer program product specification (Part II).
Computer program development plan (CPDP).
Configuration management plan.

Interface control document.

Operator's manual.

User's manual.

Computer program test plan and procedures.

The criticality of the computer programs developed at this site ranges from zero to two
(see table 2.2-1 for explanation). Ground support and system test programs are considered
criticality zero, while operational programs are either criticality one or two. Missile and
weapon systems software and flight control systems software are considered more critical
than telemetry, simulation, display, and scoring calculation programs. However, no

distinction was evident in the leve! of requirements for criticality one or two software.

Only general information on the characteristics of the software was obtained for the
three categories of systems developed at the site (threat, missile, and scoring systems).

These are discussed in the following paragraphs.

A-4

T pe———y

A3.3.1 Threat Systems

The principal languages used in program implementation are FORTRAN-77 and some
assembly language routines for special processes, such as input/output handling. The
software for these systems has been typically programmed on minicomputers, such as the
ECLIPSE, NOVA-3, VAX-11, HP 1000, ROLM, and PDP-11/LSI-11. The system functions
they perform include ground systems, antenna control, network interfacing for mission
data, servo/slave control, and target scenario simulation (used in electronic warfare air
crew training). Representative functions that are implemented in software include the
following:

Interface to keyboard, CRT, and disk.

Radar ranging and position calculation.

Servo positioning.

Message handling.

Radar systems monitoring.

Console control interface.

Radar systems simulation.

Tracking control.

Target and threat data interpretation.

A3.3.2 Missile Systems

The principal languages used for embedded operational computer programs are JOVIAL
J73 and assembler. Because of the throughput performance requirements and limitations
on available onboard memory inherent to missile systems, assembly language is commonly
used to program the missile-resident computer programs. JOVIAL is used in non-missile~
resident software and ATLAS is used for ground checkout programs. The onboard
programs typically occupy 40K to 62K bytes of memory. The functions performed by the
onboard programs include the following:

Navigation.

Autopilot.

Executive control.

Guidance.

Tracking and stabilization.

Fusing.

A-5

@'

Downlink telemetry. S 3
Electronic counter-countermeasures. v e
Built-in-test.] L

|
i
i

+

The ground systems developed for missile contracts perform the following functions:
Data link interface.

e o ae L0 B
s : .

Command receiver.
Radar processing.
Ground test.

The ground test (ATE) software is developed and executed on minicomputers, such as the ..

PDP-11; flight software is targeted for execution on a special-purpose 16-bit micro-~

processor, such as the General Missile Processor.

B LRI
@
A

A3.3.3 Scoring Systems
Examples of scoring systems are the Digital Doppler Scoring System, Antenna Identifica- j:-;t'..’.:':"_::'.:if.if::

tion Scoring System, and Aerial Gunnery Target System. These systems typically are
targeted for 8-bit or 16-bit microprocessors, such as the Intel 8080 and 8086. They are
often coded in assembly language, using the Intel Development System. The software
functions performed encompass the following:

Graphics.

Trajectory calculation.

Performance and statistics calculation.

Trajectory calculation algorithms.

Analog-to-digital conversion.
Telemetry (discrete and continuous).
Front end formatting and filtering.

A4. CATEGORIZATION OF SOFTWARE FUNCTIONS

The list of software functions in this appendix is based on responses to surveys performec
as part of the preparation of this handbook. The first draft of this list was reviewed by
representatives of this Air Force mission. However, it is possible that the list is not

complete, or that another individual from the same organization would have described ot

oY P
ll" A " - R .'.'.'. E

categorized the software types differently, The number that follows each software
function is the assigned software category. This software category is 1 of 18 standard

categories defined in section 2.2, and it is used in path | to determine the applicable

testing techniques.

1. Threat Systems—defensive and offensive radar, targeting/tracking

systems, electronic countermeasures

SOFTWARE FUNCTIONS
controls and displays
message handling
radar range and position calculation
radar systems monitoring
servo positioning
target/threat data interpretation
tracking control

CATEGORY
4

10
10
16

2. Guided Weapon Systems—air-to-air, air-to-ground missiles, smart bombs

SOFTWARE FUNCTIONS
autopilot
built-in-test (BIT)
downlink telemetry
electronic counter-counter measures
executive control
fusing
guidance
launcher sequencing
mission data preparation
ndvigation

tracking and stabilization

CATEGORY
6
9
16
10

wWow N W W N e

E ROMICRONE S AUl oRh SNl iun bt S RnEC AR Jeni st ML Sunil uean o e R T B

3. Scoring Systems—proximity detectors for projectiles; used in aerial gunnery

training

SOFTWARE FUNCTIONS CATEGORY
analog-to-digital conversion 13 .‘_'_
front end formatting and filtering 13
graphics 14 ; '
performance statistics calculation 1 '
telemetry 13

trajectory calculation

trajectory calculation algorithms

¢

L g

)
a'e

Fotvl

[RE CEEEATIMEI R - S A Y et

b
).
F

T T Ao T Pafiba i it it fpnd e

-

APPENDIX B: AVIONICS

The software testing procedures described in this appendix are based on a representative
site devoted largely to this mission. Therefore, the procedures covered in this appendix
may not include all aspects of the avionics mission.

Bl. AERONAUTICAL SYSTEMS DIVISION (ASD)

ASD is a developing agency for weapons systems equipment, including avionics, automatic
test equipment, crew training devices, and flight control and reconnaisance/C3 systems.
System and software development are typically contracted out; the development contrac-
tors tend to be medium to large size aerospace corporations, with substantial technical
expertise in weapon systems development. The systems and embedded software are
developed under well-defined contractual requirements and monitored by on-site
representatives and frequent reviews of activity and documentation by ASD personnel. A
wide diversity of software is developed by ASD, including numerous aircraft avionics and
control systems, and communications systems software.

Development activities are controlled by Government standards and testing practices are
fairly uniform, adhering to AF regulations and uniformly defined testing requirements,

imposed by SOW.

B2. ASD MISSION

. The primary mission of Aeronautical Systems Division (ASD) is to acquire aeronautical
systems that meet the needs of Air Force users such as Strategic Air Command, Tactical

Air Command, Air Training Command, and Air Force Logistics Command to provide
? maintenance and support systems. Virtually all systems and equipments are developed by
: contractors, who are also responsible for development (and sometimes maintenance) of
',’j the computer programs and computer data.

b v

t Since there is very little weapon system software developed by ASD personnel, the main
::i.j activities of ASD software engineers and software managers are to (1) assist in preparing
[Z:: the computer resource elements of specifications and requests for proposals, (2) partici-

pate in evaluating contractor proposals during the source-selection process, (3) monitor

\

3 AJEN RN
PRERE e -
CR AR R AN R R A e e R SLRARLN RS N

v L) » M "‘-- £ 9 S.- -~l.-- s "A{-L-(. &TA; PR PR VN L.A‘n'_ u‘_.">~.' PO

-..- s~ ’.--\--
NN

RIS IL IO R I S - I -
PR PRI AT RO A AL v g o a

el o

FOAPRIP I
N VST T

the progress and change activity during system development, and (4) assess the degree to
which requirements are being satisfied. These software engineers and managers interact
with other engineers and managers involved with the system and report their findings
through appropriate ASD internal channels to program management for status, under-
standing and decisionmaking. In certain programs, Government personnel are assisted in
their tasks by support contractors commonly called Systems Engineering and Technical
Assistance and independent verification and validation (IV&V) contractors. IV&V contrac-
tors are usually focused on software issues, while SETA contractors have a broader scope

with software as one of the elements within that scope.
B3. SOFTWARE DEVELOPMENT ENVIRONMENT

This appendix covers five major types of weapon system software developed at ASD,
including the development and mission support software associated with each type. These
five types are categorized for convenience as avionics; automatic test equipment; air
crew training device (ATD); flight control; reconnaissance; and command, control, and
communications (C3). The software developed by the ASD contractors is highly varied
from category to category. Furthermore, the software within each category is far from

homogeneous in its nature.

Avionics Software at ASD (Overview). Avionics software usually encompasses the
software aboard aircraft, airborne strategic missiles, and some air-to-ground missiles
acquired by ASD. Aircraft avionics operational flight programs (OFP) are generally
divided into two categories: (1) offensive avionics, which implements functions such as
navigation; air data computation; weapons management; sensor data reduction and con-
trols; stores management; target recognition and designation; cockpit controls and
displays terrain avoidance; terrain following; computer executive functions; and communi-
cations and (2) defensive avionics, which focuses on electronic threat detection; threat
discrimination; threat avoidance; a variety of jamming techniques, controls, displays; and
computer executive functions. The specific set of avionics functions depends on the
nature of the aircraft (air-to-air fighter, air-to-ground fighter, multirole fighter, fighter
bomber, strategic bomber, cargo, tanker, reconnaissance, or trainer) and the specific

requirements for that aircraft.

B-2

) RS

[
.

e Ty v T
s Ta

". AT AT,

R X
R

AR

R AR

RS A}

RRSCRR R B

Onboard automated built-in-test functions or central integrated test systems are used to
determine hardware and system failures, to notify air crews for assessment of the effect
on mission performance, and to notify ground crews for maintenance actions. These
software functions may or may not be considered part of the avionics, depending on
individual perspectives within ASD.

Detailed information follows regarding avionics software.

a. Requirements. The software functional and performance requirements are generally
derived by contractors from avionics system requirements of the same type. In
addition, the Air Force, may specify certain software design requirements that may
change over the years, depending on the advancement of technologies.

Generally, modern avionics software and firmware is distributed among special-
purpose computers of the "minicomputer" class and among microprocessors. Com-
munication among processors is usually according to the protocol defined for serial
multiplex buses in MIL-STD-1553B. The OFP is a real-time program usually
operating under an executive concept of rigorously scheduled function execution in
the foreground activities for each mode of the mission. The scheduling timeframe
for foreground is a part of the design of the software, based on how frequently the
required data are updated to achieve mission performance. Less critical functions
operate in the background and are usually scheduled on a time-available basis, with
higher priority activities interrupting those of lower priority. This rigorous
scheduling is imposed to simplify the design concept and to ensure repeatability

during software and system test so that transient anomalies are minimized.

b. Language. Until the B-1 program and the F-16 program, avionics software was
exclusively programmed in assembly language. With the susccessful use of the
JOVIAL language on the above two progams, the Air Force has standardized on the
JOVIAL J73 language (according to MIL-STD-1589B) for all avionics application
(unless an approved waiver based on technical or cost issues is granted). Offensive
avionics software using JOVIAL usually has about 80% of the object code generated
from JOVIAL source code with the remainder in assembly code. Input/output
functions (not supported by JOVIAL) are relegated to assembly code. With this
80/20 mix, the JOVIAL expansion of code and timing is estimated at 15% over that
of well-done assembly code.

B-3

c. Size. The size of avionics OFP's varies considerably from application to application.

For simple fighter aircraft, the OFP may be less than 3,000 or 4,000 instructions;

whereas, for a strategic bomber the total OFP size may be 100 times larger. As the

functional requirements increase, so do the sizes of the OFP and its data tables.
: The Air Force usually requires a margin on sizing, timing, and communications
E:: throughput to provide for future modification and growth of the avionics suite.
' These margins may be initially specified in the range of 15% to 50% of total
_ capacity, but the tendency has been for software growth to use a significant amount

of this margin before development is complete.

d. Development facilities. Typically, avionics software is developed on a general-
purpose host (IBM 370, VAX 11/780) in JOVIAL and initially targeted for the host.
After error-free compilation of units, some minor checkout takes place on the host.
Units are then recompiled on the host and targeted for the flight computer. Some
unit and module testing is done through an instruction-level simulation or interpre-
tive computer simulation on the host, but this is usually minimal because of long
running time and slow turnaround. A software development laboratory (SDL) is used
for module and computer program component checkout and integration. This
laboratory simulates (usually on Harris type or VAX computers) other system
hardware elements and drives the software in real time on breadboard processors.
Each processor in the distributed system is at first driven "standalone" to test the

software in that one computer.

A more extensive facility, the System Integration Laboratory and Test Facility

(SILTF) is used by the software development team to integrate the various computer
elements so that the distributed system may be exercised with as much real
: equipment (rather than simulated equipment) as economical. After this phase, the
P software is handed over to a separate test team (within the same company), which
. conducts tests on the SILTF according to rigorous test plans and procedures
developed by the contractor and reviewed by the Air Force. Digital and graphic

data are recorded to verify correct functional performance against the verification
cross-reference matrix contained in section 4 of the CPCI development specifica-
tions. Software problem reports or discrepancy reports are written by the software

development team, and corrections prepared and periodically incorporated through

contractor configuration control procedures. Retest is accomplished after correc-

tions are implemented.)

B-4

. .
'AvA 8.8 8

f
e s lar _'a

b
b
3
=
L
L

. .
ARSI
Iy CLI.

« EEnT

N

EXAAAAS

te @

Test Equipment Software (Overview). There are three generic types of automatic test
equipment that are procured by ASD for aircraft: flightline test equipment, intermediate
shop test equipment, and depot test equipment. The purpose of the flightline ATE is to
check out aircraft systems to isolate faulty black boxes, or line replaceable units (LRU).
The intermediate shop test equipment designed for combat bases uses ATE to isolate
faults in LRU's to specific electronic cards, or shop replaceable units (SRU), which are
then replaced. SRU's are either discarded or sent to one of five U.S. depots where the
third type of ATE isolates the faulty components on the cards, which are then repaired

and returned to inventory.

Detailed information follows regarding test equipment software.

a. Software categories. There are usually four categories of software that are part of
the ATE software: (1) the operating system, which is usually provided by the vendor
of the computer (often a commercially available machine); (2) the support software,
which includes compilers or interpreters, assemblers, linkers and loader (often
commercially available); (3) control software, which controls the various electronic
devices (signal generators and the like) that are part of the tester; and (4) unit-
under-test (UUT) software, which activates in sequence the control software and
measures the appropriate response of the UUT for that test condition. The UUT
software also identities the faulty elements of the UUT. The two most modern ATE
developments are those for the F-16 aircraft and the Modular Automatic Test
Equipment (MATE) program.

b. Language. The ATE software (for the first three categories above) is usually
written in assembly language and FORTRAN, with the UUT software usually written
in some version of ATLAS. The current Air Force standards are IEEE Standard
C/ATLAS 716-1982 and 717-1982. The MATE program is an effort to standardize
on ATE interfaces for future equipments. MATE is examining the use of JOVIAL
373 rather than FORTRAN for future ATE software and is advocating the use of the
above IEEE standards for ATLAS.

c. Development process. The requirements process usually starts with a Test Require-
ments Document (TRD) for the equipments to be tested by ATE. The TRD's are
usually prepared by the designers or manufacturers of the units. From the TRD's

and previous experience, a weapon system contractc: or an ATE contractor derives

e.

or selects the test station requirements, which include the operating system and
control software requirements. From the TRD's and detailed documentation on the
UUT's and test stations, the specifications for UUT software are derived. In more
recent systems, these documents have been reviewed by IV&V contractors, which
the SPO's have indicated to be beneficial and cost-effective.

Testing. For economic reasons, the tests to be implemented in ATE software can
never be totally exhaustive. There are many failure modes possible to a UUT, either
singly or in combination; consequently, those that constitute a high percentage (90%
to 95%) of all failures are implemented in the UUT software.

It is not economical to test every fault isolation option in UUT software on actual
test hardware. Since the fault itself must be inserted into the UUT to conduct the
test (this may be difficult to do without inserting multiple faults) and since the
number of test units available may be limited, UUT software testing usually is slow
and expensive. Usually for tests witnessed by the Air Force, 50 to 100 different
tests are run on the software against a single, actual UUT. Remaining errors,
problems, or needed test programs are resolved during the software maintenance

activity, with some economic justification.

Special requirements. Fault tolerance is seldom a requirement for ATE software. If
there is a hardware or software fault in the tester or the UUT, the philosophy has
been that the fauit should be repaired rather than provide software to work around
that fault. Self-test is usually provided in the test station so that test station
hardware failures may be isolated and repaired quickly to bring the test station back
on line.

Development environment. Modern systems normally compile, interpret, and assem-
ble on the test computer. An exception to this is the F-15 intermediate shop test
equipment system, which compiles the UUT software on an IBM 360. This approach
is now deemed to be less efficient. Much of the debugging is done on the tester
itself with a real hardware UUT in place, turn-around through a separate host takes

too long, and the minicomputer in the test set has the capacity to do the hosting job.

R e B e e o PR P Rem——

Neither environmental simulators nor simulations of the UUT are used. The first is
not needed and the second approach is not considered effective. Writing and
debugging the simulation of the UUT is considered more expensive than the present
methods that use the actual UUT hardware.

Simulator Software (Overview). ASD acquires a variety of automated crew training

devices, ranging from simple part-task trainers, which provide a training element that

may be as short as 8 to 10 minutes in duration, through full weapon system trainers, which

may simulate an 8- to 10-hour mission for an entire strategic bomber crew, including

pilot, copilot, navigator, flight engineer, and electronics warfare officer. For pilot

training, these air crew training devices present all of the cockpit instruments and

displays, pilot controls, window and heads-up displays, motion effects, aural cues and

effects, realistic aerodynamic response for the simulated aircraft, engine responses,

vibration, and avionics equipment behavior, including sensor behavior and weapon release.

a.

C.

Virtually all of the functions are simulated in software on one or multiple
commercially available 32-bit minicomputers. In a recent system (F-16), a copy of
the aircraft avionics computer with its flight software has been included in the
simulator itself, rather than simulating the flight programs on a general-purpose
computer. Commercially available operating system software, peripheral devices
(tapes, disks, printers, CRT's, etc.) and their control software are generally used.
Applications programs that simulate the aircraft function and perform much of the
instructor station operation are specified to be written in FORTRAN.

Software characteristics. The fundamental control philosophy for simulator soft-
ware design is a prescheduled, synchronous timeframe for those highly cyclic
aircraft activities with other lower priority activities running in the background on
an interruptible basis. Modularity (one function per module), tup-down design, and
separation of data from program instructions are usually requirements on the
software effort. The software generally checks the ranges and validity of

instructor -supplied parameters and provides fault data for maintenance purposes.

Specifications. Usually the entire ATD is a single configuration item of which the
software is an element. The system specification for the ATD indicates the
functions to be represented in the system, the general level of fidelity, the required
margins for computational speed, bus throughput, directly addressable memory, and
bulk memory (usually disk).

B-7

d. Testing. The fundamental adequacy of the software and simulator performance is
judged through formal tests in which experienced p:lots "fly" the simulator and
assess its "feel" compared to the real aircraft. Other elements of the system, such
as the instructor station capabilities, are verified by objective tests.

Flight Controls (Overview). Digital flight controls and digital engine controls represent

relatively new areas of computer application at ASD. Both involve the primary issues of

high performance and flight safety. Whereas the computer resource activity for the three

applications previously discussed have had at least 10 to 15 years of history and evolution
at ASD, these control applications are relatively new and are not yet implemented in an
- aircraft scheduled for production.

t a. Language. Development of flight control software has to date been in assembly
b . language but will no doubt be done in HOL in the future as mature compilers become
[available. The general development and test procedures are similar to those for

avionics software.

Software characteristics. The control law implementations for multiaxis stability

and aircraft control are highly algorithmic in nature with different algorithms and
different control gains for different flight modes or regimes. The software is
written against prescheduled time increments so that periodic data updates and
control computations are completed at a cyclic frequency to maintain an adequate
margin for stability and control. Less important functions are scheduled in the

background, some of which may be triggered on an event rather than on a cyclic

basis

The preparation of flight control software requires a thorough understanding of the
hardware implementation, both in its failed states and its unfailed states, as well as
an understanding of control theory. The testing of this software is complicated by
the requirement to test the system both in its nomimal state and in its large number

of failure combinations.

c. Testing. ASD/ENF is currently determining what will be necessary in the software
requirements and test area for safety qualification. The character of flight control
software can be generally ascertained by a review of the advanced fighter
technology integration (AFTI) programs being pursued by the Flight Dynamics

Laboratory in the Air Force Wright Aeronautical Laboratories.

YL YT - ——

d. Special requirements. In general, the sensor and computational hardware will be
triple or quadruple redundant so that failure of one or two processors would not
jeopardize flight safety. Sensor data will be cross-strapped among the processors so

M <o DD

Comparison of input data from similar sensors will be used to isolate failed sensor

strings. Comparison of output data will be used to identify failed processor

CL A AEK ASE sme 4
AR AT

elements. The fault-tolerance requirement (hardware fault detection and isolation)
is a key requirement and adds considerable complexity, particularly if battle damage

causes aerodynamic and control surface changes.

Overview of Reconnaissance and CB. ASD is responsible for the acquisition of ground
systems that receive (from aircraft sensors) data regarding the ground threat environ-
ment. These data, such as radar digital maps or ground electronic emissions information,
are processed to determine the nature and location of various threats. Upon threat
identification and location (during a real battle), the ground computational system, in

conjunction with human controllers, may (1) plan an action against some of the threats, (2)

allocate weapon and aircraft resources, and (3) control the flightpath of the aircraft

and/or its weapons to the vicinity of the selected targets.

a. Hardware. These systems may be implemented in commercially available or
militarized versions of commercial computers. These are usually of the mini or
super minicomputer class with special-purpose, high throughput processors for signal
processing and distributed, tightly coupled parallel processors for the remainder of
the processing.

b. Software. FORTRAN and assembly are usually the languages used for the
application software that is structured and modular. The development is usually on
the minicomputers used for the project, and the testing procedures parallel those
used in the SILTF.

Future flight control software will interact with the avionics software (1) to achieve
automated delivery of weapons and (2) to use avionics sensors. A key requirement
on this type of software will be that errors in the avionics system shall not

propagate into the flight control software. This may be a difficult requirement to

validate.

B-9

D T S T St e, e
. -

- .
- LN) ~ « e’
b BT IET SN DR

TRV B Y. B R S T -

o
. R N e A L M A A ST WAL R - e .
. . - . - et e tet -

N N R A R AL AR A LI I AL S S P RN I

R IN . PN ST I T
PIRPSUPIPE SN W DU DAL Sl N TR

that each can operate on the full set of sensor data with identical software. —i e

PR

ey

B4. CATEGORIZATION OF SOFTWARE FUNCTIONS

The list of software functions in this appendix is based on responses to surveys performed » o '.
as part of the preparation of this handbook. The first draft of this list was reviewed by

representatives of this Air Force mission. However, it is possible that the list is not

complete, or that another individual from the same organization would have described or

et R
et L
S e
PAPAPPENT T A

categorized the software types differently.
» ‘ The number that follows each software function is the assigned software category. This
software category is | of 18 standard categories defined in section 2.2 and is used in
path I to determine the applicable testing techniques. ® ® ‘
f A. Airborne Systems ~
i 1. Avionics Systems . :
SEE
a. Mission Avionics ® ’ ° ;
SOFTWARE FUNCTIONS CATEGORY SRR
aerial delivery 3 ; RS
automatic approach/landing 4
communication 10
control/display processing 14
data bus control 2
navigation/guidance 5
real time executive 2
self-test 9
sensor control 3
sensor data reduction 10
sensor test/credibility 10
terrain following/avoidance 2,16

b. Offensive Avionics

T 'y T T —— —— ——

SOFTWARE FUNCTIONS
stores management
target recognition/acquisition

weapons control

c. Defensive Avionics

SOFTWARE FUNCTIONS
jamming
threat avoidance
threat detection
threat discrimination

2. Flight Critical Systems
a. Flight Control

SOFTWARE FUNCTIONS
digital flight control

sensor data processing

b. Fuel Management
c. Engine Control

SOFTWARE FUNCTIONS
digital engine control
engine cycle data acquisition

B. Ground Systems
I. Air Crew Training Devices

fault detection and accommodation

Pt A Al

CATEGORY
1
1ée
3

CATEGORY
10
2
10
16

CATEGORY
3
10

CATEGORY
3
13
2,9

- . e A
..

' P\
SoLe .

SOFTWARE FUNCTIONS CATEGORY
aural system 3
computation system (executive, support, 1,4

maintenance software)

digital radar land mass system 3

electronic warfare system 3

electro-optical viewing system 3

gravity seat systems 3

instructor /operator station 14

) motion systems 3
; student station 2
visual systems 14

2. Automatic Test Equipment
SOFTWARE FUNCTIONS CATEGORY

control software 2

system software (compilers, support s/w) 17

Unit Under Test (UUT) software 9

- e
LN
‘\-.-\-‘..]

APPENDIX C: COMMAND, CONTROL, AND COMMUNICATIONS

The software testing procedures described in this appendix are based on a representative
site devoted largely to this mission. Therefore, the procedures covered in this appendix
may not include all aspects of the command and control mission.

Cl. STRATEGIC AIR COMMAND

The Strategic Air Command (SAC) has a diversity of missions to support, such as
command and control, war planning, intelligence support, and strategic weapons support.
It also develops a wide diversity of unrelated systems for these missions. For strategic
weaponry, SAC is a user agency, while for the other areas it is both a developer and user.
War planning and intelligence systems are developed and maintained almost exclusively by
Air Force personnel, while often the development of information and management
systems are primarily conducted by contractors with the maintenance shared by Air Force
and contractor personnel. The software developed for the warning functions ranges from
highly critical to noncritical. Software development practices for contractors are
controlled by the SOW; internal maintenance is conducted in accordance with SAC
regulations. SAC computation systems tend to be data base and data processing intensive,
such as in the intelligence and war planning areas. The warning area includes real-time
control functions, and the command centers use C3 technology software. SAC-conducted
software testing practices and methods are standardized by SAC regulations; however,
there exists variability in their application, corresponding to the differences in the

software categories, criticality, and functional organizational practices.
C2. SAC MISSIONS

The missions performed by SAC include command and control, war planning, warning and
intelligence support. The general functions performed within these missions are as
follows.

Automated command control:
a. Collection of status-of-forces information on a near-real-term basis, using general-
ized information on a near-real-time basis and a generalized software system called

the Force Management Information System.

ol

b.

P S s Mt e S8 e s Jand ek Bk etk Sesg Bt Seuie snctih et

All geographically dispersed SAC subordinate units are linked to headquarters

computers via a Data Transmission Subsystem.

Command Post wall screen and printer displays provide data to the Commander-in-
Chief Strategic Air Command (CINCSAC) and the Battle Staff concerning availabil-
ity of resources for Single Integrated Operational Plan (SIOP) execution. Progress

of force activity can be monitored as events materialize.

Support is provided to the Single Tanker Missions for worldwide Tactical Air
Command (TAC) aircraft deployments.

Support is provided to the SAC aircraft contingency planning staff.

Software development support is provided for Numbered Air Force Control Systems.

Software development support is provided for Airborne Command Post Force

Control Systems.

War planning:

a. Planning of intercontinental ballistic missiles (ICBM), aircraft, and cruise missile
sorties against specified enemy targets is accomplished using intelligence estimates,
weapons capabilities, and geological factors.

b. Computer simulations permit "flying" sorties to determine success probability.

c. Extensive use of interactive graphics permit SAC and JSTPS planners to visualize
SIOP development.

d. Production of flight plan cassettes for unmanned cruise missiles.

e. Gaming techniques provide information on methods to improve the plan by pitting
the SIOP against the probable enemy plan.

Warning:

a. Computers embedded in various missile warning field sensors enable the detection

and/or tracking of hostile missile launches.

.........

b. Near-real-time displays on several display devices notify Command Post personnel
of endangered SAC resources and provide information needed for decisions of force

posturing, including launch for survival of aircraft.

c. An automated countdown to impact and checklists of required actions greatly assist

the decisionmaking process.

Intelligence support:
a. Online interactive analyst support is provided for collection management, photo-

graphic and electronic intelligence analysis and correlation, target development for

the National Target Base and maintenance of offensive and defensive orders-of- RS
battle on the SAC On-Line Analysis and Retrieval System (SOLARS).

b. Automated processing of electronic intelligence (ELINT) is accomplished to support

the airborne reconnaissance program. sl

c. Development of processing systems provide for SAC evaluation of airborne

reconnaissance collectors.

d. Use of graphic displays supports processing of scientific and technical data

describing electronic emitter characteristics.

e. Map overlay plotting is used to support SIOP and ELINT production.

1. Automated support to reprogrammable airborne electronic warfare systems is

provided.

g- Communications support and online analytical support for operational intelligence
analysts are provided.

Management support:

a. The management information requirements of the HQ SAC staff are supported with C T

40 Air Force standard and 39 command-unique Management Information Data

Systems.

b. Remote terminals in the Headquarters building permit online support.

o Computer output microfiche (COM) capability is available, as well as the Honeywell

Page Printing System.

d. Liaison is maintained with the Air Force Data Systems Design Center, Manpower

and Personnel Center, Accounting and Finance Center, and other MAJCOM's.

C3. CATEGORIZATION OF SOFTWARE FUNCTIONS

The list of software functions in this appendix is based on responses to surveys performed -

as part of this handbook preparation. The first draft of this list was reviewed by -
representatives of this Air Force mission. However, it is possible that the list is not
complete, or that another individual from the same organization would have described or »
categorized the software types differently. i - r~'~-i~'~=4

The number that follows each software function is the assigned software category. This

software category is 1 of 18 standard categories defined in section 2.2 and is used in

path 1 to determine the applicable testing techniques.

SOFTWARE FUNCTIONS CATEGORY

controls and displays 14 e
data base management 12 ‘,'.m“ T
interactive interface 14

mapping/plotting (graphics) 14

mission data preparation 12,1 . » °
sensor data processing 10 o
simulation (non real-time) 11

simulation (real-time) 11

tracking 6

P SN
.......

. « .
S

APPENDIX D: MISSILE/SPACE

The software testing procedures described in this appendix are based on a representative
site devoted largely to this mission. Therefore, the procedures covered in this appendix
may not include all aspects of the missile/space mission.

D1. SPACE DIVISION

The Space Division (SD) is a development agency for space-related systems, including
satellites, launch vehicles, and ground control and communications systems. SD relies
extensively on contractors to develop its systems and the embedded software, which also
performs maintenance under follow-on contracts. Software development requirements
are defined in detail in the SOW; and SD personnel, often coupled with technical
consultant contractors, monitor all development activities at all levels intensively.
Frequent reviews and technical direction are provided by this agency. A wide diversity of
software categories is developed by SD, including software for communications, satellite
control systems, prelaunch checkout and ground test systems, space vehicle avionics and
control, and system simulations. This site employs IV&V contractors to a greater extent
than any of the other sites surveyed. Software testing practices are established by Air
Force regulation, defined by SOW and, as a result, tend to be relatively uniform among
the development contractors. SD places great emphasis on the thoroughness, sufficiency,
and formality of contractor testing practices.

D2. SD MISSION

The primary mission of SD is to acquire space-related systems, which include satellites,
launch vehicles, and ground contro! and communications systems. Also, SD is responsible
for managing and operating some elements of these acquired systems, such as the
Satellite Control Facility and the Vandenberg Launch Facility. The new Space Command
will impact these operating activities in a way that is yet to be determined.

SD relies on contractors to develop its systems, including the software within its systems.
Development contractors for SD usually continue to maintain the software (if mainten-
ance is required).

.
P

r

Y.
.
r
»

Ml B Sgs Snce aa. s Wy Ty T T o0 —""¥ T

Because systems and system software are not developed by SD, the main activity of its
personnel is to prepare RFP's, evaluate proposals, and conduct software management

surveillance during the contract.

Technical assistance in the software area is rrovided by Aerospace Corporation, a non-
profit systems engineering and technical direction contractor, providing technical consul-
tation to the Air Force. In addition, particular major programs are usually technically
assisted by IV&V contractors, who are selected competitively on a program-by-program

basis.
D3. SOFTWARE DEVELOPMENT ENVIRONMENT

This section of the report will present an overview of four major types of SD software:
ground control and communications systems, prelaunch checkout and launch systems,
launch vehicle systems, and space vehicle systems. It will be evident that the software
developed by SD contractors is highly varied in character from category to category.
There is no technical detail concerning SD software that is true for all applications at this
site. Following these overviews, the report will focus primarily on those specific

applications encompassed in the survey.

SD relies on contractors using their own tools to develop and test software. Unlike the
aeronautical systems, space systems rely on development contractors to continue to
maintain the software through its life cycle; furthermore, for certain systems a high
degree of contractor IV&V is provided. The software characteristics within an entire

system and across systems vary substantially.

Ground Control and Communications (Overview). SD has acquired and is acquiring
systems and software that (1) control the attitudes and functioning of unmanned
satellites; (2) gather, reduce, record, and display data transmitted by satellites; and (3)
communicate and control manned space activities. Some examples of these systems
include the Satellite Control Facility (SCF) at Sunnyvale, the Global Positioning Satellite
ground component, and the Consolidated Space Operations Center (CSOC) at Colorado
Springs.

These systems have extensive amounts of software with major functions such as satellite
detection (both enemy and friendly), orbit determination, displays of status to controllers,
and satellite attitude correction and communication with one another and remote sites.
In fact, if either the CSOC or the SCF become disabled, they can perform each others
functions, as well as the Johnson Space Flight Center.

Most of the software is written in higher order language (JOVIAL and HAL-S with some
FORTRAN for CSOC and JOVIAL for SCF) and operates in "near-real" time. CSOC
software is maintained by Air Force personnel with substantive contractor support, while
SCF primarily uses contractor maintenance. These systems are generically similar to SD's
reconnaissance and C3 systems but are larger in scope and more multipurpose.

Prelaunch Checkout and Launch Systems (Overview). A considerable investment in
software resides in prelaunch checkout and ground launch systems that perform the
booster and satellite ground checks before and during countdown and that peform the
range safety function during launch. For new vehicles, the existing facilites are adapted,
new software written, and additional factory checkout equipment moved to the launch
site.

The software requires a detailed understanding of the hardware being checked and the
system's function. These activities bear a simlarity to SD's automatic test equipment
software, but on a more focused scale, since the checkout activity usually is confined to
the contractor's facility and the launch site.

Launch Vehicle Systems (Overview). Software in launch vehicle systems maintains the
stability of the vehicle during its flyout and takes inertial and other sensor information in
order to follow a preplanned launch trajctory. The software design is based on a rigidly
scheduled, cyclic sequence of events much like aircraft avionics software. This software
is usually small in size, often fitting into a 16K word memory and is usually written in
assembly.

The development and testing of this software parallels that described for SD's avionics
software, except that it is simpler in function for the vehicles that launch unmanned
payloads.

Space Vehicle Systems (Overview). Space vehicle systems may be classified as satellites
that are manned, such as the Space Shuttle, and unmann~d4 vehicles that are used for
exoatmospheric transport, such as the inertial upper stage JS), and the Mini Vehicle used
in the Antisatellite System.

For the most part, manned satellites do not use digital computers, aside from some recent
systems that have small processors for attitude sensing and pointing and other station-
keeping responsibilities. More use of digital computers in future satellites is expected,

with emphasis for these computers on low power and fault-tolerant design.

The Space Shuttle has substantial onboard software, but this effort was primarily a NASA
effort and beyond the scope of this study.

Exoatmospheric transport vehicles again are very similar to launch vehicles in their
software matures, with the exception of the additional feature of engine control, more
extensive maneuvering, and payload dispensing. Again, like aircraft avionics, simulation
using a hot bench (SILTF-like facility) is performed during the design and testing to

establish the real-time performance.

Usually, more extensive IV&V is performed on these systems than on SD systems. This
IV&V usually includes independent testing on separate facilities, using separate tools by
IV&V contractors.

D4. CATEGORIZATION OF SOFTWARE FUNCTIONS

The list of software functions in this appendix is based on responses to surveys performed
as part of this handbook preparation. The first draft of this list was reviewed by
representatives of this Air Force mission. However, it is possible that the list is not
complete, or that another individual from the same organization would have described or

categorized the software types differently.

The number that follows each software function is the assigned software category. This
category is | of 18 standard categories defined in section 2.2 and is used in path 1 to
determine the applicable testing techniques.

]
s

'l
.l L] ll'
VORI

’
g .

A. Equipment Checkout—pre-launch checkout, equipment self-test

SOFTWARE FUNCTIONS CATEGORY
automatic test equipment (ATE) 9
built-in-test (BIT) 9
central integrated test systems (CITS) 9
B. Aerospace defense—threat detection and warning, threat evaluation L ° F
jf
SOFTWARE FUNCTIONS CATEGORY i
automatic processing 13 e ~ 5
data base management 12 ® ® !
filtering and smoothing 9 O 1
guidance and control 3 o j‘
message processing 8 S e
mission data preparation 12 L N :
mission planning 15
real-time control 2
real time executive 2
satellite impact prediction 5,7
satellite tracking 5
sensor processing 10
(sensor) tracking 5
simulation 11
situation notification 14
space information correlation 1
space situation analysis 15

task selection and displays 14

o

LW,
. .

" T - 2
L -_rl_. .,

- ." LA g

APPENDIX E: MISSION/FORCE MANAGEMENT

The software testing procedures described in this appendix are based on a representative
site devoted largely to this mission. So the procedures covered in this appendix do not

include all aspects of the mission/force management mission.
El. TACTICAL AIR COMMAND

The Tactical Air Command (TAC) is the development and user agency for the major Air
Force ta-tical planning system, Computer Assisted Air Force Management System
(CAFM3). The CAFMS is a single-function, highly interrelated automated processing
system. The major output product of CAFMS is the air tasking order report. CAFMS was
developed by TAC personnel with some contractor assistance during the early require-
ments and design phases. Management, development, and maintenance of this system is
well defined and uniquely adapted for its ongoing support. The system is currently
operational, but undergoes continual enhancements and incorporation of new capabilities.
The overall function of the CAFMS is quite critical, but few of its software components
are considered to be more than moderately critical. The system does incorporate some
automated fallback provisions in case of failure, but redundancy of systems function is not
provided and reversion to manual operation is the ultimate fallback provision. Testing
practices are well defined and are incorporated as an integral part of a version release
management system devcloped by TAC specifically for CAFMS. Testing is applied
uniformly to all software components undergoing development.

E2. TAC MISSION

The Tactical Air Command operates the Tactical Air Control Centers (TACC). The
mission of TACC is to prepare, issue, and monitor the execution of coordinated orders for
the employment of all forces available to the Air Force Component Commander. The
TACC is the operations center of the Tactical Air Control System (TACS). The CAFMS
was developed to augment the TACS with automated information processing, storage and

display capabilities, and secure digital communications capabilities.

The primary mission area applicable to the TAC is Mission/Force Management. /n

e

PPN

..

o s

-

.-. L A

- A . e a__.a
- R -

............
......

LML AN ot SNE 0 D R o i ~ s W - LN s aal e il S AL it IO . v il = . i M s L v MA v
R A T - N O PRl S S P PN LA - ?

N

applicable secondary mission area is C3, because the Mission/Force Management functions

are integrated into and communicates through a communications network.

E3. SOFTWARE DEVELOPMENT ENVIRONMENT

This section provides a summary of CAFMS and its software development environment.
TAC has no other tactical systems involving significant software development or
maintenance that were applicable to the survey. All elements of CAFMS are developed,
programmed, and controlled in the same manner and within the same organizational
structure. The CAFMS is essentially a heterogeneous system in this respect. All code is
implemented and tested according to the same standards and procedures. Therefore, the

CAFMS was the only system surveyed for TAC. It is discussed as a single entity in this
report, although in actuality it comprises a number of individual but interrelated
computer programs. Each of these programs is developed by a uniform and disciplined
rr‘ management process.

Virtually all software effort on CAFMS is considered to be new development, as opposed
to maintenance of existing program elements. This development effort involves augment-
ing the existing system with additional functions and integrating them into the overall
design. It also involves major revisions to the system performance parameters, such as
the data base contents, to enhance the system or to accommodate new functions. In this
manner, the CAFMS is undergoing an evolutionary development process to meet current
tactical planning demands and also to adapt it to changes in its operational environment.

All changes are accomplished in a phased approach.

Development of CAFMS requirements was shared about equally between Air Force
personnel and a supporting contractor. Design and development through initial installa-
tion were accomplished mainly by the Air Force, with only about 10% done under
contract. Subsequent development and maintenance are entirely the responsibility of

TAC. The system is currently undergoing initial operational test and evaluation.

Criticality factors for CAFMS include major mission impact, which probably is represent-
N ative of Air Force mission/force management systems. The confidence level (see table
B-1 in appendix B for explanation) that applies to software development and testing is

level 2. Therefore, the development disciplines and level of software error detection are

r_ DRI AN RN AV STl AR o Juult 2t M dac o Py — T T T T T .d SR e

comparable to many of the other major Air Force weapon systems, such as command and
control and avionics systems.

CAFMS Overview. CAFMS is designed primarily to build, disseminate, and monitor the
execution of the Air Tasking Order (ATO). There is also a requirement to build and
generate a variety of status reports and periodic and end-of-day summaries. CAFMS
reduces ATO preparation time. Since TACC is mobile, CAFMS must be capable of limited
deployment. Therefore, there must be some ability to identify and change the names,

locations, etc., of subelements in the data base. Also, CAFMS must be capable of
processing classified information up to and including SECRET. CAFMS provides an

automated assist to the manual system for some of its key functions. The main operating

centers are the 9th Air Force, the 12th Air Force, and the USAF Tactical Air Warfare

Center. CAFMS is intended to fulfill the following requirements.

a. Increase capacity and accuracy in the display of air situation and mission progress
data.

b. Maintain status of bases and forces.

c. Significantly decrease the time required for preparation and dissemination of the
ATO.

d. Significantly decrease the time used in routine and clerical tasks associated with
mission planning.

e. Automatically generate and disseminate status and summary reports.

f. Provide terminals at the Control and Operations Centers, Air Support Operations
Centers, Wing Operations Centers, and TACC.

g. Maintain status of communications, weather, munitions, etc.

h. Provide an offline AUTODIN interface from the TACC to any AUTODIN user,
through the 407L System, TACS Communication System.

System Description. CAFMS has the following six major system functions:

a. Startup. The startup function initializes all other system functions during initial
startup or during recovery. This initialization includes establishment of the system
environment; for example, communications assignments for participating units,
message alert routing, display access authorization, and system access authoriza-
tion. The data base are initialized either to start clean or, if after a recovery, to
start at the last saved position. Communications initialization facilitates hookup of
all remote terminals and other communications links.

.........

NN NN AT

- - - - -~ * LR - N
- - ~ - - . - - - - P S R) N .
PP R S W VR YRR WA D W VR YR W WA WP S PO

WaT e Y. . - ~ .
. 'p"_~‘ 'L.":‘"-" ‘-;‘ s IR) :.‘-. PO

Console. At TACC, the console functions include the ability to build, update, and
disseminate the ATO. It also includes the automatic building of mission schedule
files to be used by current operations and report generation for the each day's
activities. Console functions common to both the remote terminals and the TACC
include log-in to gain access to the system, display printing capability, review of the
ATO, update and delete capabilities for mission schedule and other files, input
validation, and the display function itself.

Communications. CAFMS communications function provides the interface between
the TACC and external elements not equipped with a remote terminal. This offline
capability allows dissemination of messages (primarily ATO) through AUTODIN or
the TACS internal teletypewriter (TTY) network.

System environment definition. This function provides the capability to maintain
and change or update the system environment as necessary. This includes a
capability to receive a printed listing of any specified system environmental data

(e.g., message routing table).

Message processing. The message processing function provides the capability to
prepare the JINTACCS ATO display formats for transmission to addressees not
possessing a remote terminal. This conversion process or reformatting includes the
insertion of header and trailer information. When the message has been formatted,

it is stored in a message file and later output to the offline paper tape punch.

Shutdown. The shutdown function provides the capability for either an orderly
termination of all computer system functions or, if necessary, an emergency
termination. An orderly shutdown includes notification to all consoles and remote
terminals that shutdown has started. All messages queued to the paper tape punch
are completed. The system environment and necessary data base information are
saved, as well as any recording information being generated. In accordance with
appropriate security directives, memory and disk are overwritten. In the case of an
emergency shutdown, only the memory and disk overwrite function are

accomplished.

PRI

N IO

«

. [N
© e e
A " J L

I3
P

’

2

> s e
et

«
e ala s

. i

ISR A S Nl ar Sl i e e i - SR it - firdear

System Data Characteristics. For in-garrison operations, external data inputs are
received by voice communications to the TACC. These data are manually entered into
the system through local consoles. In deployed operations, inputs are provided through the
remote terminals and/or voice communications. Functional user data inputs are as

follows:

. Aircraft/Aircrew Status.

. Munitions Status.

. Weather Status.

. Unit/Base Status.

. Air/Ground Situations. .

. Communications link Status. m e e
e o

The data outputs provided by CAFMS are the ATO message, Mission Schedule displays, ROE

and Status/Report displays. The following are the displays available in CAFMS. ; f.':'-‘;:.“', _'1]

. Air Tasking Order '. . ‘-*j

. Mission Schedule Displays o B
. Fighter/FAC/Support/Other L T
. Reconnaissance ; .

. Status/Report Displays

. Unit/Base Status

. Aircraft/Aircrew Status

. Munitions Status

. Weather Status

. Aircraft Losses

. Unit Air Sortie Recap

. Mission Air Sortie Recap

. Communication Circuits Status
. Strike Packages

Standards and Documentation. The major regulations applicable to CAFMS software
development are the AFR 300-series and AFR 800-14, and DOD 7935.1-S, Automated
Data Systems Documentation Standard. Applicable computer program docuinentation
include the following items.

. System specification.

. Computer program design specification.

E-5

e

N ‘:"

@
.

. Configuration management plan.

. Data base specification.

. Operator's manual.

. User's manual.

. Functional description.

. Development test plan (one per module).

Programming standards and conventions identified for CAFMS provide coverage for top-
down structured development (analysis, design, and process), coding standards and testing

k requirements (module, subsystem, and system testing). o ,‘__41

E4. CATEGORIZATION OF SOFTWARE FUNCTIONS

The list of software functions in this appendix is based on responses to surveys performed
as part of the preparation of this handbook. The first draft of this list was reviewed by
representatives of this Air Force mission. However, it is possible that the list is not
complete, or that another individual from the same organization would have described or

categorized the software types differently.

The number that follows each software function is the software category into which this
function has been assigned. This software category is one of 18 standard categories

defined in section 2.2 and is used in path | to determine the applicable testing techniques.

SOFTWARE FUNCTIONS CATEGORY
communication 10
controls and displays 14
data base management 12
mapping 14
message processing 8
secure data processing 12, 8, &4
war planning 15

E-6

D.‘.l
PRI
"-J"; WA

e T—— e e S
w— . - — . —p—— - ——r——r——

Y

MISSION
of
Rome Avr Development Center

RADC plans and executes nesearch, development, test and
selected acquisition proghams Ln support of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineerning support within areas of technical competence
£i8 provided to ESD Program Offices (POs) and other ESD
elements. The prnincipal technical mission areas are
commundications, electromagnetic gudidance and control, sun-
veillance of ground and aerospace objects, intelligence data
collection and handling, information system technology,
L{onospheric propagation, solid state sciences, microwave
physics and electronic neliabikity, maintainability and
compatibiiity.

